
Introduction to ARM

Module 1,ESD(18EC62)
Sheetal Patted

Asst Prof,Electronics and Communication Dept

APS College of Engg

1APS College of Engg,Bengaluru

Introduction

• Microcontrollers are required to handle more work without
increasing products frequency or power.

• ARM cortex M3 was designed to target 32 bit controller.

• Addresses the requirements of 32 bit controller in following
ways

– Greater performance efficiency

• More work without increasing frequency or power

– Low power consumption

• Longer battery life

• Critical in portable products

– Enhanced determinism

• Critical tasks and interrupts are serviced as quickly as possible in
known number of cycles

2APS College of Engg,Bengaluru

– Improved code density

• Code fits in smallest memory foot print

– Lower cost solutions

– Wide choice of development tools

• From low cost or free compilers to full featured development suites

• ARM 7 is the most widely used 32 bit embedded processor in

history

• ARM does not manufacture processor or sell the chips directly

– ARM licenses the processor design to business partners

– Partners create their:

• Processors

• Controllers

• System on chip solutions

– This business model is commonly called IP

3APS College of Engg,Bengaluru

• ARM architecture design is divided into 3 portfolios
– A profile: high performance, open application platforms

– R profile: High end embedded systems in which real time
performance

is needed

– M profile: Deeply embedded microcontroller type systems

• A profile

– Designed to handle complex applications such as high end OS

– Requires

• Highest processing power

• Virtual memory system support with Memory Management Unit

• E.g high end mobile phones, electronic wallets

• R profile

– Real time high performance processors

– High processing power

– High reliability

– Low latency

4APS College of Engg,Bengaluru

• M profile

– Target low cost applications

– Processing efficiency and cost important

– Power consumption low

– Low interrupt latency

– Ease of use

– E.g Industrial control applications, real time control applications

5APS College of Engg,Bengaluru

Evolution of ARM processor

6APS College of Engg,Bengaluru

Processor Naming
• Traditionally, ARM used a numbering scheme to name

processors.

• In the early days (the 1990s), suffixes were also used to

indicate features on the processors. For example, with the

ARM7TDMI processor:

– T indicates Thumb instruction support

– D indicates JTAG debugging

– M indicates fast multiplier

– I indicates an embedded ICE module.

• Subsequently, it was decided that these features should become

standard features of future ARM processors

7APS College of Engg,Bengaluru

• Instead, variations on memory interface, cache, and tightly

coupled memory (TCM) have created a new scheme for

processor naming.

• For example, ARM processors with cache and MMUs are now

given the suffix “26” or “36,”

• whereas processors with MPUs are given the suffix “46” (e.g.,

ARM946E-S).

• In addition, other suffixes are added to indicate synthesizable2

(S) and Jazelle (J) technology. With version 7 of the

architecture

• ARM has migrated away from these complex numbering

schemes that needed to be decoded, moving to a consistent

naming for families of processors, with Cortex its

• initial brand. a v7 processor but was based on the v4T

architecture.

8APS College of Engg,Bengaluru

9APS College of Engg,Bengaluru

10APS College of Engg,Bengaluru

Instruction set development

• Two different instruction sets are supported on

the ARM processor

– 32 bits ARM instructions

– 16 bits Thumb Instructions
11APS College of Engg,Bengaluru

• During program execution, the processor can be
dynamically switched between the ARM state and
the Thumb state to use either one

• Thumb instructions provides only a subset of the
ARM instructions
– It can provide higher code density

– Useful for products with tight memory requirements

• With update in architecture version, extra
instructions have been added to both ARM and
thumb.

• Thumb-2 set is a new superset of Thumb
instructions
– Contains both 16 bit and 32 bit instructions

12APS College of Engg,Bengaluru

Thumb-2 Technology and ISA
• Thumb-2 technology extended the Thumb ISA into a highly

efficient and powerful instruction set.

• Delivers significant benefits in terms of

– Ease of use

– Code size

– Performance

• Allows more complex operations to be carried out in the

thumb state

– Allows higher efficiency by reducing the number of states

switching between ARM state and Thumb state.

• Cortex M3 processor is not backward compatible with

traditional ARM processors

13APS College of Engg,Bengaluru

• Cortex-M3 is not backward compatible with
traditional ARM processors

14APS College of Engg,Bengaluru

Processor Applications

• Low-cost microcontrollers

– Ideally suited for low cost microcontrollers commonly used
in consumer products

– Toys and electrical appliances

– Its lower power, high performance and ease of use
advantages enable embedded develop32-bit developers to
migrate to 32 bit systems and develop ARM products

• Automotive

– Has very high performance efficiency and low interrupt
latency allowing it to be used in real time systems.

– Supports up to 240 external vectored interrupts

15APS College of Engg,Bengaluru

• Data Communications
– Processors low power and high efficiency, coupled

with instructions in Thumb-2 for bit field
manipulation, make the cortex-M3 ideal for many
communications applications, such as Bluetooth
and ZigBee

• Industrial Control
– In industrial control applications simplicity, fast

response and reliability are key factors

– Cortex M3 processors interrupt feature, low
interrupt latency and enhanced fault handling
features make it strong candidate in this area

16APS College of Engg,Bengaluru

• Consumer Products

– Many consumer products have a high-
performance microprocessor

– Cortex-M3 processor, being a small processor, is
highly efficient and low in power and supports an
MPU enabling complex software to execute

– Provides Robust memory protection

17APS College of Engg,Bengaluru

Fundamentals
• Cortex M3 is a 32 bit microprocessor

• It has a 32-bit data path

• Has a 32-bit register bank

• Has a 32-bit memory interfaces

• Processor has a harvard architecture
– Separate instruction and data bus

• For complex applications that require more
memory system features, the cortex-M3
processor has an optional memory protection
unit (MPU)

18APS College of Engg,Bengaluru

Simplified view of Cortex-M3

19APS College of Engg,Bengaluru

Registers

20APS College of Engg,Bengaluru

Special Registers
• Cortex-M3 has a number of special registers.

– Program Status Registers(PSR’S)

– Interrupt Mask
Registers(PRIMASK,FAULTMASK,BASEPRI)

– Control Registers (CONTROL)

21APS College of Engg,Bengaluru

Special Register Functions

22APS College of Engg,Bengaluru

Operation Modes
• Cortex-M3 processor has 2 modes and 2

privilege levels

• The operation modes determine whether the
processor is running a normal program or
running an exception

• The privilege levels provide a mechanism for
safeguarding memory access to critical regions

23APS College of Engg,Bengaluru

Allowed Operation mode transitions

24APS College of Engg,Bengaluru

Built in NVIC

• Cortex-M3 processor includes a interrupt
controller called the NVIC

• It is closely coupled to the processor and
provides a number of features

– Nested interrupt support

– Vectored interrupt support

– Dynamic priority changes support

– Reduction interrupt latency

– Interrupt masking

25APS College of Engg,Bengaluru

• Nested Interrupt Support

– Provides nested interrupt support

– All the external interrupts and most of the system
exception can be programmed to different priority
levels

– When an interrupt occurs the NVIC compares the
priority of the running and newly arrived interrupt

• If the priority of the newly arrived is higher than the
currently executing the interrupt handler will override
the current running task

• If priority of the newly arrived is less than the currently
executing, the newly arrived is rejected

26APS College of Engg,Bengaluru

• Vectored Interrupt Support

– When an interrupt is accepted, the starting address of
the ISR is located from a vector table in memory

– No need to use software to determine and branch to
the starting address of the ISR.

– Takes less time to process the interrupt request

• Dynamic Priority Change support

– Priority levels of interrupts can be changed by the
software during run time

– Interrupts that are being serviced are blocked from
further activation until the ISR is completed

– Priority can be changed without risk of accidental
reentry

27APS College of Engg,Bengaluru

• Reduction of Interrupt Latency
– Cortex-M3 processor includes a number of advanced

features to lower the interrupt latency

– Features Includes
• Automatic saving and restoring some register contents

• Reducing delay in switching from one ISR to another

• Handling of late arrival interrupts

• Interrupt Masking
– Interrupts and system exceptions can be masked

based on
• their priority level

• Using Interrupt masking registers- BASEPRI, PRIMASK,
FAULTMASK

– Ensure that time critical tasks can be finished on time
without being interrupted

28APS College of Engg,Bengaluru

Memory Map

• Cortex-M3 has a predefined memory map

• Allows built in peripherals, such as interrupt
controller and the debug components to be
accessed by simple memory access
instructions

• Most system features are accessible in C
program code

• Predefined memory allows the processor to
be highly optimized for speed and ease of
integration in SOC

29APS College of Engg,Bengaluru

30APS College of Engg,Bengaluru

Bus interfaces
• There are several bus interfaces on cortex-M3

processor which allows processor to carry instruction
and data accesses at the same time.

• The main bus interfaces are as follows:
– Code memory bus

• Code memory region access is carried out on this

• Physically consists of two buses, one called I-code and other called
D-code

• These are optimized for instruction fetches for best instruction
execution speed

– System bus
• Used to access memory and peripherals

• Provides access to SRAM, peripherals, external RAM, external
devices and part of the system level memory regions

– Private Peripheral bus
• Provides access to part of the system level memory dedicated to

private peripherals such as debugging components 31APS College of Engg,Bengaluru

The MPU (Memory Protection Unit)

• Cortex M3 has an optional MPU
• Allows access rules to be set up for the privileged

access and user program access
• When an access rule is violated, a fault exception

is generated
– Fault exception handler will be able to analyze the

problem and correct it, if possible.

• The MPU can be used in various ways
– OS can set up the MPU to protect data use
– Used to make memory regions read-only to prevent

accidental erasing of data

• It can help make embedded system more robust
and reliable

32APS College of Engg,Bengaluru

Instruction Set
• ARM cortex supports the Thumb-2 instruction set

– One of the most important features of the cortex M3
as it allows both 16-bit and 32-bit instructions to be
used together

– Advantages

– High code density and high efficiency

– Flexible and powerful yet easy to use

– Thumb-2 has made it possible to handle all processing
requirements in one operation state

– No state switching overhead, saving both execution
time and instruction space

– No need to separate ARM code and Thumb code
source files

33APS College of Engg,Bengaluru

34APS College of Engg,Bengaluru

• Some powerful and interesting instructions of
cortex-M3

– UFBX,BFI, and BFC:

• Bit field extract, insert and clear instructions

– UDIV and SDIV

• Unsigned and Signed divide instructions

– WFE, WFI and SEV

• Wait for event, Wait for interrupts and Send event

• These allow the processor to enter sleep mode and to
handle task synchronization on multiprocessor system

– MSR and MRS

• Move to special register from general purpose register

• Move special register to general purpose register
35APS College of Engg,Bengaluru

Interrupts and Exceptions

36APS College of Engg,Bengaluru

Low Power and High Energy Efficiency

• Cortex-M3 processor is designed with various
features to allow designers to develop low
power and high energy efficient products
– First ,It has:

• Sleep mode and deep sleep mode which can reduce
power consumption during idle period

– Second:
• Its low gate count and design techniques reduce circuit

activities in the processor to allow active power to be
reduced

• Cortex M-3 has high code density, it has
lowered the program size requirement

37APS College of Engg,Bengaluru

• Allows the processing task to be completed in
a short time so that it can return to sleep
mode as soon as possible to cut down energy
use

• Energy efficiency of cortex-M3 is better than
many 8-bit or 16-bit microcontroller

38APS College of Engg,Bengaluru

Debugging Support

• Cortex-M3 processor includes a number of
debugging features such as

– Program execution control

– Including halting and stepping

– Instruction breakpoints

– Data watch points

– Register and memory accesses

– Profiling and tracing

39APS College of Engg,Bengaluru

• The debugging hardware of ARM Cortex-M3
processor is based on the coresight architecture.

• CPU core itself doesn’t have JTAG interface

• Instead a debug interface module is decoupled
from the core

• A bus interface called the Debug Access Port
(DAP) is provided at the core level

• Through this interface, external debuggers can
access control registers to debug hardware as
well as the system memory even when the
processor is running

• Control of this bus interface is carried out by a
debug port (DP) device

40APS College of Engg,Bengaluru

• Chip manufacturers can also include an
Embedded Trace Macrocell (ETM) to allow
instruction trace

• Within the cortex-M3 a number of events can
be used to trigger debug actions
– Debug events can be breakpoints, watchpoints,

fault conditions, external debugging request input
signals

– When a debug event takes place, the Cortex-M3
processor can either enter halt mode or execute
the debug monitor exception handler

• Data watch point function is provided by a
data watchpoint and trace (DWT) unit in the
Cortex-M3 processor

41APS College of Engg,Bengaluru

• DWT can be used to trigger or to generate
data trace information

• When data is traced, the traced data can be
output via the TPIU

• Cortex-M3 also provides a flash patch and
breakpoint (FPB)

• An ITM(Instrumentation Trace Macrocell)
provides a new way for developers to output
data to a debugger.

• All debugging components are controlled via
DAP interface bus or by a program running on
the processor core.

42APS College of Engg,Bengaluru

Characteristic Summary
• Why is the Cortex-M3 such a revolutionary

product? What are the advantages and
benefits of using the Cortex-M3

– High performance

– Advanced Interrupt Handling Feature

– Low power consumption

– System features

– Debug Supports

43APS College of Engg,Bengaluru

High Performance
The Cortex-M3 processor delivers high Perfor-

mance in microcontroller products

• Many instructions, including multiply, are single cycle.
– Outperforms most microcontroller products

– Separate data and instruction buses allow simultaneous
data and instruction accesses to be performed

– The Thumb-2 instruction set makes state switching
overhead history.

– The Thumb-2 instruction set provides extra flexibility in
programming
• Many data operations can now be simplified using shorter code

• Cortex M3 has higher code density and reduced memory
requirements

44APS College of Engg,Bengaluru

– Instruction fetches are 32 bits.

• Up to 2 instructions can be fetched in one cycle

• There’s more available bandwidth for data transfer

– The cortex-M3 design allows microcontroller
products to operate a high clock frequency

• Has better CPI (Clock per instruction)

• Allows more work per Mhz or design can run at lower
clock frequency for low power consumption

45APS College of Engg,Bengaluru

Advanced Interrupt-Handling Features

Interrupt features on Cortex-M3 processor are easy to use,
very flexible and provide high interrupt processing
throughput

• The Built-in NVIC supports upto 240 external interrupt
inputs

• The Cortex-M3 processor automatically pushes registers
R0-R3, Link Register (LR), PSR and PC in the stack at
interrupt entry and pops them back at interrupt exit
– Reduce IRQ handling latency

• NVIC has programmable interrupt priority control for each
interrupt
– Eight levels of priority are supported

46APS College of Engg,Bengaluru

Low Power Consumption
Cortex-M3 is suitable for various low-power applications

Suitable for low-power designs because of the low gate

count

• It has power saving mode
– Can enter sleep mode using WFI or WFE

– Has separated blocks for essential blocks so clocking
circuits for most parts of the processor can be stopped
during sleep

• The fully static, synchronous, synthesizable design
makes the processor easy to be manufactured using
any low power or standard semiconductor process
technology

47APS College of Engg,Bengaluru

System Features

• Cortex-M3 provides various features making it
suitable for a large number of applications
– The system provides bit-band operation, byte-

invariant big endian mode, and unaligned data access
support

– Advanced fault handling features include various
exception types and fault status registers, making it
easier to locate problems

– With the shadowed stack pointer, stack memory of
kernel and user processes can be isolated

– With optional MPU, the processor is more than
sufficient to develop robust software and reliable
products

48APS College of Engg,Bengaluru

Debug Support
• Supports JTAG or serial-wire debug interfaces

• Based on the coresight debugging solution,
processor status or memory contents can be
accessed even when the core is running

• Built-in support for six breakpoints and four
watch points

• Optional ETM for instruction trace and data
trace using DWT

49APS College of Engg,Bengaluru

• New debugging features, including fault status
registers, new fault exceptions and flash patch
operations, make debugging much easier

• ITM provides an easy-to-use method to
output debug information from test code

• PC sampler and counters inside the DWT
provide code profiling information

50APS College of Engg,Bengaluru

Cortex-M3 Basics

• Cortex-M3 processor has register R0-R15 and
a number of special registers

– R0 through R12 are general purpose

– 16 bit Thumb instructions can only access R0
through R7

– 32 bit Thumb-2 instructions can access all these
registers

– R0-R7 called as low registers

– R8-R12 called as high registers

51APS College of Engg,Bengaluru

• Stack Pointer R13

– The Cortex M3 has two SP’s allowing two separate
stack memories to be set up.

– The two SP’s are as follows

• Main Stack Pointer
– This is the default SP

– Used by the OS kernel, exception handlers and all application
codes that require privileged access

• Process Stack Pointer
– This is used by base level application code

– It is not necessary to use two SP’s ; simple
applications can rely purely on the MSP

– The instructions for accessing stack memory are
PUSH and POP

52APS College of Engg,Bengaluru

– The Cortex-M3 uses a full-descending stack
arrangement

– SP decrements when new data is stored in the
stack

– PUSH and POP are usually used to save register
contents to stack memory at the start of a
subroutine and then restore the registers from
stack at the end of the subroutine

– You can PUSH or POP multiple registers in one
instruction

– Instead of using R13 you can use SP in your
program codes

53APS College of Engg,Bengaluru

54APS College of Engg,Bengaluru

• Link Register R14

– Inside an assembly program, you can write it as
either R14 or LR

– LR is used to store the return program counter
when a subroutine or function is called

• Program counter R15

– R15 is the PC. You can access it in assembler code
by either R15 or PC

55APS College of Engg,Bengaluru

Special Registers

• Special registers in Cortex-M3 include the
following
– Program Status Registers

– Interrupt Mask registers (PRIMASK,
FAULTMASK,BASEPRI)

– Control Register (CONTROL)

• Special registers can only be accessed via MSR
and MRS instructions

• They do not have memory addresses

56APS College of Engg,Bengaluru

• The PSR’s are subdivided into three status
registers

– APSR’s (Application Program Status Register)

– IPSR (Interrupt Program Status Register)

– EPSRs Execution Program status register.

• The three PSR’s can be accessed together or
separately using the special register access
instructions MSR and MRS

• When they are accessed as a collective item,
the name xPSR is used

• EPSR and IPSR are readonly

57APS College of Engg,Bengaluru

58APS College of Engg,Bengaluru

Bit Fields in Cortex-M3 PSR

59APS College of Engg,Bengaluru

PRIMASK, FAULTMASK & BASEPRI

• The PRIMASK, FAULTMASK & BASEPRI
registers are used to disable exceptions

60APS College of Engg,Bengaluru

• The BASEPRI and PRIMASK registers are useful
for temporarily disabling interrupts in timing
critical tasks.

• An OS could use FAULTMASK to temporarily
disable fault handling when a task has crashed

61APS College of Engg,Bengaluru

Control Register

• The control register is used to define the
privilege level and the SP selection

• The register has 2 bits

– It can either be 0 or 1

62APS College of Engg,Bengaluru

Exceptions and Interrupts

63APS College of Engg,Bengaluru

64APS College of Engg,Bengaluru

Operation Mode
• The Cortex-M3 processor supports two modes

and two privilege levels

• When the processor is running in thread mode, it
can be in either the privileged or user level

– But handlers can only be in the privileged level

• When the processor exits reset, it is in thread
mode, with privileged access rights

65APS College of Engg,Bengaluru

• In the user access level (Thread mode)

– Access to system control space (SCS) a part of
memory region for configuration register and
debugging components is blocked

– Instructions that access special register cannot be
used

– If a program running at the user level tries to
access SCS or special registers a fault exception
will occur

• Software in the privileged access level can
switch the program into user access level
using the control register

66APS College of Engg,Bengaluru

• When an exception takes place, the processor
will always switch to a privileged state and
return to the previous state when exiting the
exception handler.

• A user program cannot change back to the
privileged state directly by writing to the
control register.

– It has to go through an exception handler that
programs the control register to switch the
processor back into the privileged access level
when returning to the thread mode

67APS College of Engg,Bengaluru

68APS College of Engg,Bengaluru

• The support of privileged and user access
levels provides a more secure and robust
architecture

– When a user program goes wrong it will not be
able to corrupt control registers in the NVIC

– In addition if the MPU is present, it is possible to
block user programs from accessing memory
regions used by privileged processes

– In simple applications, there is no need to
separate the privileged and user access levels

• In these cases, there is no need to use user access level
and no need to program the control register

69APS College of Engg,Bengaluru

• The mode and access level of the processor
are defined by the control register

– When the control register bit 0 is 0, the processor
mode changes when an exception takes place

70APS College of Engg,Bengaluru

– When the control register bit 0 is 1, both
processor mode and access level change when an
exception takes place

71APS College of Engg,Bengaluru

Stack Memory Operations
• Besides normal software-controlled stack PUSH

and POP, the stack PUSH and POP operations are
also carried out automatically when
entering/exiting an exception/interrupt handler

• In general stack operations are

– Memory write or read operations with address
specified by SP

– Data in register is saved into stack memory by a PUSH
operation and can be restored to registers later by a
POP operation

– When PUSH/POP instructions are used, the SP is
incremented/decremented automatically

72APS College of Engg,Bengaluru

CORTEX-M3 Implementation

73APS College of Engg,Bengaluru

74APS College of Engg,Bengaluru

75APS College of Engg,Bengaluru

Two Stack Model in Cortex –M3

76APS College of Engg,Bengaluru

77APS College of Engg,Bengaluru

Reset Sequence

78APS College of Engg,Bengaluru

79APS College of Engg,Bengaluru

Memory Systems

1 APS College of Engg,Bengaluru

Memory Maps

2 APS College of Engg,Bengaluru

 Cortex-M3 processor has a fixed memory map.

 Makes it easier to port software from one cortex-M3 product
to another

 Some of the memory locations are allocated for private
peripherals such as debugging components

 They are located in private peripheral memory region

 They include

 Fetch patch and breakpoint Unit

 Data watchpoint and trace unit

 Instrumentation Trace Macrocell

 Embedded Trace Macrocell

 Trace port Interface Unit

 ROM Table

3 APS College of Engg,Bengaluru

 Cortex-M3 processor has a total of 4GB of address space

 Program code can be located in the code region, SRAM

region or external RAM region

 Best to put the program code in code region

 Instruction fetch and data accesses are carried out

simultaneously on two separate bus interfaces

 SRAM memory range is for connecting internal SRAM

 Access to this region is carried out via the system interface

bus

 In this region a 32MB range is defined as a bit-band alias

4 APS College of Engg,Bengaluru

 Bit Band Operation

5 APS College of Engg,Bengaluru

 Peripherals

 Another 0.5 GB block of address range is allocated to on-

chip peripherals.

 Similar to SRAM this region supports Bit-Band alias and is

accessed via the system bus interface

 Instruction execution in this region is not allowed

 External RAM and external devices

 Difference between the two is the program execution in

the external device region is not allowed

 Some differences with the caching behaviors

6 APS College of Engg,Bengaluru

 Last 0.5 GB memory is for:

 System level components

 Internal peripheral buses

 External peripheral bus

 Vendor specific system peripherals

 There are two segments of the private peripheral bus

(PPB)

 AHB(Advanced High performance bus)

 For internal AHB peripherals only which includes NVIC, FPB, DWT

and ITM

 APB(Advanced Peripheral Bus)

 For internal APB devices as well as external peripherals

7 APS College of Engg,Bengaluru

 NVIC is located in a memory region called the System

control space (SCS)

 SCS

 Besides providing interrupt control features, this region also

provides the control registers for SYSTICK, MPU and code

debugging control

8 APS College of Engg,Bengaluru

Memory Access Attributes

 Memory map defines the memory attributes of the access

1. Bufferable:

 Write to memory can be carried out by a write buffer while
processor continues on next instruction execution

2. Cacheable:

 Data obtained from memory read can be copied to a memory cache

 Accessed value can be obtained from cache to speed up program
execution

3. Executable:

 Processor can fetch and execute program code from this memory
region

4. Sharable:

 Data in this region can be shared by multiple bus masters

 Need to ensure coherency of data between different bus masters

9 APS College of Engg,Bengaluru

 Cortex M3 bus interfaces output the memory access

attributes information to the memory system for each

instruction and data transfer.

 Default attribute settings can be overridden if MPU is present.

 Memory access attributes for each memory region are as

follows:

 Code memory region (0x00000000-0x1FFFFFFF)

 Region is executable

 Cache attribute is WT

 Can put data memory in this region as well

 Data operations will take place via data bus interface

 Write transfers are bufferable

10 APS College of Engg,Bengaluru

 SRAM memory (0x20000000-0x3FFFFFFF)

 Intended for on-chip RAM

 Write transfers are bufferable

 Cache attribute is WB-WA

 Region is executable

 Peripheral region (0x40000000-0x5FFFFFFF)

 Intended for peripherals

 Accesses are non cacheable

 Cannot execute instruction code in this region

 External RAM(0x60000000-0x7FFFFFFF)

 Intended for on-chip or off-chip memory

 Accesses are cacheable WT

 Can execute code in this region

11 APS College of Engg,Bengaluru

 External RAM(0x80000000-0x9FFFFFFF)

 Intended for on-chip or off-chip memory

 Accesses are cacheable WT

 Can execute code in this region

 External devices (0xA0000000-0xBFFFFFFF)

 Intended for external devices and/or shared memory that

needs ordering/non buffered accesses

 Non executable region

 External devices (0xC0000000-0xDFFFFFFF)

 Intended for external devices and/or shared memory that

needs ordering/non buffered accesses

 Non executable region

12 APS College of Engg,Bengaluru

 System Region (0xE0000000-0xFFFFFFFF)

 For private peripherals and vendor specific devices

 Nonexecutable

 For PPB memory range, the accesses are strongly ordered(non

cacheable, nonbufferable)

13 APS College of Engg,Bengaluru

Default Memory access permissions

 Prevents user programs from accessing system control

memory spaces

 Default memory access permission is used when there is

no MPU or when MPU is disabled

14 APS College of Engg,Bengaluru

15 APS College of Engg,Bengaluru

Bit-Band Operations

 Allows a single load/store operation to access

(read/write) to a single data bit

 In Cortex M3 supported in two predefined memory

regions called bit-band regions

 1st located in 1MB of SRAM region

 2nd located in 1MB of peripheral region

 These regions can be accessed like normal memory

 Can also be accessed via a separate memory region called bit-

band alias

 When bit-band alias is used each individual bit can be accessed

separately in the LSB of each word –aligned address

16 APS College of Engg,Bengaluru

17 APS College of Engg,Bengaluru

Remapping of Bit-Band Addresses in SRAM region

18 APS College of Engg,Bengaluru

 Remapping of Bit-Band Addresses in peripheral Memory

19 APS College of Engg,Bengaluru

Advantages of Bit-Band operation

 We can use them to:

 Implement serial data transfers in General Purpose

input/output (GPIO) ports to serial devices.

 Used to simplify branch decisions

 If a branch should be carried out based on 1 single bit in a status

register in a peripheral, instead of

 Reading the whole register

 Masking the unwanted bits

 Comparing and branching

 Operations can be simplified to

 Reading the status bit via the bit-band alias

 Comparing and branching

20 APS College of Engg,Bengaluru

 Besides providing faster bit operations with fewer

instructions, bit-band feature is also essential for

situations in which resources are shared by more than

one process

 One of the most important advantages or properties of bit-

band operation is that it is atomic

21 APS College of Engg,Bengaluru

Data are lost when an exception handler

modifies a shared memory location

22 APS College of Engg,Bengaluru

Data loss prevention with locked transfers

using the bit-band feature

23 APS College of Engg,Bengaluru

Data are lost when a different task modifies

a shared memory location

24 APS College of Engg,Bengaluru

Data loss prevention with locked transfers

using the bit-band feature

25 APS College of Engg,Bengaluru

 Bit-Band operation of different data sizes

 Bit-Band operation is not limited to word transfers, it can be carried

out as byte transfers or half word transfers as well.

 If LDRB/STRB is used to access a bit-band alia address range, access

generated to the bit-band will be in byte size

 LDRH/STRH makes access in the bit band to be halfword size

 Bit-Band Operations in C

 C compilers do not understand that the same memory can be

accessed using two different addresses

 They do not know that accesses to bit-band alias will only access the

LSB of the memory location.

 To use bit-band feature in C, the simplest solution is to separately

declare the address and the bit-band alias of a memory location

26 APS College of Engg,Bengaluru

27 APS College of Engg,Bengaluru

Unaligned Transfers

 Cortex-M3 supports unaligned transfers on single access

 Data memory accesses can be defined as aligned or

unaligned

 Traditional ARM processors allow only aligned transfers

 A word transfer must have address bit[1] and bit[0] equal to 0

 E.g 0x1000 or 0x1004

 A half word transfer must have address bit[0] equal to 0

 E.g 0x1000 or 0x1002

 Unaligned can be any word size read/write such that

address is not a multiple of 4

28 APS College of Engg,Bengaluru

29 APS College of Engg,Bengaluru

 Limitation of Unaligned Transfers

 Not supported in load/store multiple instructions

 Stack operations must be aligned

 Exclusive accesses must be aligned; otherwise a fault exception
will be triggered

 Unaligned transfers are not supported in bit-band

 Results will be unpredictable if you attempt to do so

 Unaligned transfers are actually converted into multiple
aligned transfers

 Takes more clock cycles for a single data access

 Not good for situations in which high performance is required

30 APS College of Engg,Bengaluru

Exclusive accesses

 Semaphores are commonly used for allocating shared

resources to applications

 When a shared resource can only service one client or

application processor is called as MUTEX

 When a resource is being used by one process, it is locked to

that process

 It cannot serve another process until the lock is released

 To set up MUTEX semaphore

 A Memory location is defined as the lock flag

 Lock flag indicates whether a shared resource is locked by a

process

31 APS College of Engg,Bengaluru

 When a process or application wants to use the resource
 It needs to check whether the resource has been locked first

 If not being used, it can set the lock flag to indicate the resource is
now locked

 In traditional ARM processors, the access to the flag is carried
out by the SWP instruction
 Allows the lock flag read and write to be atomic

 Prevents the resource from being locked by two processes at the
same time

 In newer ARM processors the read/write access can be carried
out on separate bus
 SWP instructions can no longer be used to make the memory access

atomic
 Because the read and write in a locked transfer sequence must be on the

the same bus

 The locked transfers are replaced by exclusive access

32 APS College of Engg,Bengaluru

 Exclusive access to work properly in a multiprocessor
environment requires “ exclusive access monitor”.

 Monitor checks:

 the transfers toward shared address locations

 Replies to the processor if an exclusive access is success

 Processor bus interface also provides additional control signals to
indicate if the transfer is an exclusive access

33 APS College of Engg,Bengaluru

 If memory device has been accessed by another bus

master between exclusive read and write

 Exclusive access monitor will flag an exclusive failed through

the bus system

 This will cause the return status of the exclusive write to be 1

 In case of failed exclusive write, the exclusive access monitor

also blocks the write transfer from getting to the exclusive

access address.

 Exclusive access instructions in cortex-M3 include

 LDREX(word) STREX(word)

 LDREXB(byte) STRXB(byte)

 LDREXH(half word) STREXH(half word)

34 APS College of Engg,Bengaluru

Endian Mode

 Big Endian

 The first byte of a word size data is stored in the most

significant byte of the 32 bit address memory location

 Little Endian

 The first byte of the word size data is stored in the least

significant byte of the 32 bit memory location

35 APS College of Engg,Bengaluru

Address Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0

0x1000 word Data bit [7:0] Data bit [15:8] Data bit [23:16] Data bit [31:24]

0x1000 half word - - Data Bit [7:0] Data bit [15:8]

0x1002, half word Data bit[7:0] Data bit[15:8] - -

0x1000, byte Data bit [7:0] - - -

0x1001, byte - Data bit[7:0] - -

0x1002,byte - - Data bit[7:0] -

0x1003 byte - - - Data bit[7:0]

Cortex-M3 (Byte Invariant Big endian, BE-8)-Data on the AHB Bus

36 APS College of Engg,Bengaluru

ARM 7 TDMI (Word-Invariant Big Endian, BE-32) Data on the AHB Bus

Cortex M3 little Endian- Data on the AHB Bus

37 APS College of Engg,Bengaluru

 ARM cortex-M3 can be programmed using either

assembly language, C language, or other high level

languages like National Instruments Lab View.

 Typical Development Flow

38 APS College of Engg,Bengaluru

 For beginners in embedded programming, using C language for

software development on the Cortex-M3 processor is the

best choice.

 Programming in C with the Cortex-M3 processor is made

even easier as most microcontroller vendors provide device

driver libraries written in C to control peripherals.

 Since modern C compilers can generate very efficient code, it

is better to program in C than spending a lot of time to try to

develop complex routines in assembly language, which is error

prone and less portable.

 C has the advantage of being portable and easier for

implementing complex operations, compared with assembly

language. Since it’s a generic computer language, C does not

specify how the processor is initialized.
39 APS College of Engg,Bengaluru

40 APS College of Engg,Bengaluru

41 APS College of Engg,Bengaluru

42 APS College of Engg,Bengaluru

Accessing memory mapped registers in C

43 APS College of Engg,Bengaluru

44 APS College of Engg,Bengaluru

45 APS College of Engg,Bengaluru

Intrinsic function

 Use of the C language can often speed up application

development

 In some cases, we need to use some instructions that

cannot be generated using normal C-code

 Some C compilers provide intrinsic functions for

accessing these special instructions

 Intrinsic functions are used just like normal C

functions.

46 APS College of Engg,Bengaluru

47 APS College of Engg,Bengaluru

Embedded Assembler and Inline Assembler

 As an alternative to using intrinsic functions, we can also

directly access assembly instructions in C code

 This is often necessary in low-level system control or

when you need to implement a timing critical routine and

decide to implement it in assembly for the best

performance.

 Most ARM C compilers allow you to include assembly

code in form of inline assembler.

48 APS College of Engg,Bengaluru

Using Assembly
 For small projects, it is possible to develop the whole

application in assembly language.

 However, this is often much harder for beginners.

 Using assembler, you might be able to get the best
optimization you want, though it might increase your
development time, and it could be easy to make mistakes.

 Handling complex data structures or function library
management can be extremely difficult in assembler.

 Even when the C language is used in a project, in some
situations part of the program is implemented in assembly
language as follows:
 Functions that cannot be implemented in C, such as direct

manipulation of stack data or special instructions that cannot be
generated by the C compiler in normal C-code

 Timing-critical routines

 Tight memory requirements, causing part of the program to be
written in assembly to get the smallest memory size

49 APS College of Engg,Bengaluru

Interface between Assembly and C

 When embedded assembly (or inline assembler, in the

case of the GNU tool chain) is used in C program code

 When C program code calls a function or subroutine

implemented in assembler in a separate file

 When an assembly program calls a C function or

subroutine

 It is important to understand how parameters and return

results are passed between the calling program and the

function being called

50 APS College of Engg,Bengaluru

First Step in Assembly programming

51 APS College of Engg,Bengaluru

Producing Outputs

 Its more fun to connect microcontroller to the outside

world

 Simplest way to do this is to turn on/off the LEDs

 Represents very limited information

 Most common output method is to send text messages to a

console

 Often handled by a UART interface connecting to a personal

computer

52 APS College of Engg,Bengaluru

 The cortex-M3 processor does not contain a UART

interface

 Most cortex-M3 microcontrollers come with UART provided

by the chip manufacturers

 Assuming UART is available

 It has a status flag to indicate whether the transmit buffer is

ready to send out new data

 Level shifter is needed

 UART is not the only solution to output text messages

 A number of features are implemented on the cortex-M3

processor to help output debugging messages

53 APS College of Engg,Bengaluru

 Semihosting

 Depending on the debugger and code library support

semihosting can be done via debug register in NVIC

 Instrumentation Trace

 Instead of using UART to output messages, we can use ITM

 Trace port works much faster than UART and can offer more

data channels

 Instrumentation trace via Serial-WireViewer (SWV)

 Allows outputs from ITM to be captured using low cost

hardware instead of a TPA

 Bandwidth provided is limited, hence not ideal for large

amounts of data

54 APS College of Engg,Bengaluru

Using Data Memory

APS College of Engg,Bengaluru55

EMBEDDED SYSTEM

COMPONENTS

Module 3

1APS College of Engg,Bengaluru

What is an Embedded System???

 An electronic/electro-mechanical system designed to

perform a specific function and is a combination of

both hardware and firmware (software)

 Embedded system are becoming an inevitable part

of any product or equipment in all fields

 Household appliances

 Telecommunications

 Medical equipment

 Industrial control

 Consumer products

2

APS College of Engg,Bengaluru

 A system which is a combination
of a generic hardware and a
general purpose operating
system for executing a variety of
applications

 Contains a GPOS

 Applications are alterable

 Performance is the key deciding
factor in the selection of the
system

 Less/not at all tailored towards
reducing operating power
requirements

 Response requirements are not
critical

 Need not be deterministic in
execution behavior

 System which is a combination of
special purpose hardware and
embedded OS for executing a
specific set of applications

 May or may not contain an OS for
functioning

 Firmware of the embedded system
is pre-programmed and it is non
alterable by the end user

 Application specific requirements
are the key deciding factors

 Highly tailored to take advantage
of the power saving modes
supported by hardware and OS

 For certain systems, the response
time requirement is highly critical

 Execution behavior is deterministic
for certain types of embedded
systems

General Purpose Computing System Embedded System

3

APS College of Engg,Bengaluru

4 APS College of Engg,Bengaluru

 Embedded hardware/software systems are basically
designed

 To regulate a physical variable

 To manipulate the state of some devices by sending some
control signals to the actuators or device connected

 The above are done in response to the input signals
provided by the end users or sensors

 Embedded system can be viewed as a reactive system

 Some embedded systems do not require any manual
intervention for their operation.

 They automatically sense the variations in input parameters
in accordance with the changes in the real world through
sensors

5

APS College of Engg,Bengaluru

 Sensor information is passed to the processor

 The processor or the brain of the embedded system
performs pre-defined operation with the help of
firmware embedded in the system

 Sends some actuating signals to the actuator connected
to the output port

 This in turn acts on the control variable to bring the variable
to the desired level

 Make the embedded system work in a desired manner

 Memory of the ES is responsible for holding the
control algorithm and other important configuration
details

6

APS College of Engg,Bengaluru

Core of the Embedded System

 Embedded systems are domain and application

specific and built around a central core.

1. General purpose and domain specific

1. Microprocessors

2. Microcontrollers

3. Digital Signal Processors

2. ASICS

3. PLDS

4. Commercial off the shelf components (COTS)

7

APS College of Engg,Bengaluru

General Purpose and Domain Specific

Processors

 Almost 80% of the embedded systems are

processor/controller based.

 Microprocessors

 It’s a silicon chip representing a CPU

 Contains ALU and working registers

 It’s a dependent unit

 Memory, Timer Unit and Interrupt Controller

 Intel claims the credit for developing the first

microprocessor unit Intel 4004

 8080,8085, 8086 etc

8

APS College of Engg,Bengaluru

 Different Instruction set and system architecture are

available for the design of a microprocessor

 System Architectures

 Harvard

 Contains separate buses for program and data memory

 Von-Neumann

 Shares a single bus for program and data memory

 Instruction set Architecture (ISA)

 RISC

 CISC

9

APS College of Engg,Bengaluru

GPP vs Application specific instruction

set processor

 GPP

 Designed for general
computational tasks

 Produced in large volume
targeting the general market

 Per unit cost is low

 Contains ALU and CU

 ASIP

 Architecture and instruction set
optimized to specific-domain or
application requirements

 Network processing, automotive,
telecom, media applications, DSP,
control applications

 Fill the architectural spectrum
between GPP and ASIC

 Need arises when GPP are unable
to meet the increasing application
needs

 Automotive AVR, USB AVR from
Atmel

 Incorporate processor and on-chip
peripherals, demanded by the
application requirement, program
and data memory

10

APS College of Engg,Bengaluru

APS College of Engg,Bengaluru

11

 Microcontrollers

 Highly integrated circuit that consists of
 CPU

 scratch pad RAM

 General purpose register arrays

 On chip ROM/FLASH for program storage

 Timer and interrupt control units

 Dedicated I/O ports

 Considered as superset of microprocessors

 Finds greater place in embedded domain

 Cheap, cost effective and readily available in the market

 ISA can be either RISC or CISC

 Designed for either general purpose application
requirement or domain specific application requirement

 A silicon chip representing a
CPU, capable of performing
arithmetic as well as logical
operations according to a pre-
defined set of instructions

 It’s a dependent Unit

 General purpose in design and
operation

 Doesn’t contain a built-in IO port,
functionality needs to be
implemented with help of 8255
PPI

 Targeted for high end market
where performance is important

 Limited power saving options

 Highly integrated chip that contains
CPU, scratch pad RAM, special and
general purpose register arrays, on
chip ROM/FLASH memory, timer,
interrupt controller and dedicated
I/O ports

 It is a self contained Unit

 Mostly application oriented or
domain specific

 Most of them contain multiple built-in
I/O ports which can be operated as
single 8 or 16 or 32 bit port or as
individual port pins

 Targeted for embedded market
where performance is not so critical

 Includes lot of power saving features

12

APS College of Engg,Bengaluru

Microprocessor Microcontroller

APS College of Engg,Bengaluru

13

 Digital Signal Processors

 Powerful 8/16/32 bit microprocessors

 Designed specifically to meet the computational demands
and power constraints of embedded audio, video and
communications applications

 DSPs are 2 to 3 times faster that general purpose
microprocessor in signal processing applications
 This is because of the architectural difference

 DSPs implement algorithm in hardware
 Speeds up the execution

 GPP implement algorithm in firmware
 Speed of execution depends primarily on the clock for the

processors

APS College of Engg,Bengaluru

14

 Typical DSP incorporates the following units

 Program Memory

 For storing program required by DSP to process the data

 Data Memory

 Working memory for storing temporary variables and
data/signal to be processed

 Computational Engine

 Performs signal processing in accordance with the stored
program memory

 Incorporates many specialized arithmetic units and each of them
operate simultaneously to increase the execution speed

 Incorporates multiple hardware shifters for shifting operands and
thereby saves execution time

APS College of Engg,Bengaluru

15

 IO Unit

 Acts a an interface between outside world and DSP

 Responsible for capturing signals and delivering the processed

signals

 DSP employs a large amount of real-time calculations

 SOP

 Convolution

 FFT

 Discrete Fourier Transform

 Blackfin processors from analog devices is an example

of DSP

 Less number of instructions

 Instruction pipelining and increased
execution speed

 Orthogonal instruction set

 Operations are performed on
registers only, the only memory
operations are load and store

 A large number of register are
available

 Programmer needs to write more
code to execute a task

 Single, fixed length instructions

 Less silicon usage and pin count

 With Harvard architecture

 Greater number of instructions

 No instruction pipelining feature

 Non-orthogonal instruction set

 Operations are performed on register or
memory depending on the instruction

 Limited number of general purpose
registers

 Instructions are like macros in C language.
A programmer can achieve the desired
functionality with a single instruction

 Variable length instruction

 More silicon usage since more additional
decoder logic is required to implement
complex instruction decoding

 Can be harvard or Von-Neumann
architecture

16

APS College of Engg,Bengaluru

RISC CISC

 Separate buses for instruction
and data fetching

 Easier to pipeline, so high
performance can be achieved

 Comparatively high cost

 No memory alignment
problems

 Since data memory and
program memory are stored
physically in different
locations, no chances for
accidental corruption of
program memory

 Single shared bus for
instruction and data fetching

 Low codes

 Low performance compared
to harvard architecture

 Cheaper

 Allows self modifying codes

 Since data memory and
program memory are stored
physically in the same chip,
chances for accidental
corruption of program
memory

17

APS College of Engg,Bengaluru

Harvard Architecture Von-Neuman Architecture

APS College of Engg,Bengaluru

18

 Big-Endian vs Little-Endian Processors/ Controllers

 Endianness specifies the order in which the data is

stored in the memory by processor operations in a

multibyte system

 Suppose the word length is 2 bytes then two ways in

which data can be stored in the memory

 Higher order of data byte at high memory and lower order

of data byte at location just below the higher memory

 Lower order of data and byte at the higher memory and

higher order of data byte at the location just below the

higher memory

APS College of Engg,Bengaluru

19

 Little Endian

 Big Endian

Load Store operations and Instruction

Pipelining

APS College of Engg,Bengaluru

20

 RISC processor instruction set is orthogonal

 Memory access related operations are performed

by the special instructions load and store.

APS College of Engg,Bengaluru

21

 The conventional instruction execution by the processor
follows fetch-decode-execute sequence

 During decode operation the memory address bus is
available

 It can be possible to effectively utilize it for an instruction
fetch.
 Processing speed can be increased

 Instruction pipelining refers to overlapped execution of
instructions
 It is meaningful to fetch the next instruction to execute, while

decoding and execution of the current instruction is in progress

 If the current instruction in progress is a program control flow
transfer instruction, no point in fetching the next instruction

APS College of Engg,Bengaluru22

Application Specific Integrated Circuits

APS College of Engg,Bengaluru

23

 ASIC is a microchip designed to perform a specific

or unique application

 Integrates several functions into a single chip and

thereby reduces the development cost

 Most of the ASICS are proprietary products

 As a single chip, ASIC consumes a very small area in

the total system

 Helps in the design of smaller systems with high

capabilities/functionalities

APS College of Engg,Bengaluru

24

 ASICs can be pre-fabricated for a special

application or it can be custom fabricated from a

re-usable ‘building block’ library components

 Fabrication of ASIC requires a non-refundable

initial investment for the process technology and

configuration expenses (NRE)

 Since ASICs are proprietary products, developers

may not be interested in revealing the internal

details of it

Programmable Logic Devices

APS College of Engg,Bengaluru

25

 Logic devices provide specific functions

 Device-to-device interfacing

 Data communication

 Signal processing

 Data display

 Timing and control operations

 Logic devices can be classified into two broad categories

 Fixed and programmable

 With PLDs designers use inexpensive software tools to quickly
develop, simulate and test their designs.

 E.g network router, A DSL modem, DVD player, automotive navigation
system

 During the design phase the customer can change the circuitry as
often they want

APS College of Engg,Bengaluru

26

 CPLDs and FPGAs

 Two major types of programmable logic devices are

 FPGA and CPLD

 FPGAs offer the highest amount of logic density, most features
and highest performance

 The largest FPGA now shipping

 Xilinx virtex

 Provides 8 million system gates

 Advanced devices also offer features such as built-in hardwired
processors
 Substantial amounts of memory

 Clock management systems

 FPGAs are used in wide variety of applications ranging from

 Data processing and storage to instrumentation, telecommunications
and digital signal processing

APS College of Engg,Bengaluru

27

 CPLDs offer much smaller amounts of logic-up to about

10,000 gates

 CPLDs offer very predictable timing characteristics and

are ideal from critical control applications

 Require low amounts of power and are very

inexpensive

 Ideal for cost-sensitive, batter-operated, portable

applications such as mobile phones and digital hand

held assistants

Advantages of PLD

APS College of Engg,Bengaluru

28

 Offer much more flexibility for customers

 Do not require long lead times for prototypes or production
parts-

 PLDS are already on a distributors shelf and ready for shipment

 Do not require customers to pay for large NRE costs and
purchase expensive mask sets

 PLDs allows customers to order just the number of parts they
need allowing them to control the inventory

 PLDs can be reprogrammed even after a piece of equipment
is shipped to a customer.

 Advanced process technologies help PLDs in number of key
areas

 Faster performance, integration of more features, reduced power
consumption and lower cost

Commercial off the shelf

components(COTS)

APS College of Engg,Bengaluru

29

 COTS product is one which is used ‘as-is’

 Designed in such a way to provide

 Easy integration

 Interoperability with existing system components

 COTS component itself may be developed around a general
purpose or domain specific processor or an ASIC or a PLD

 Examples

 Remote controlled toy car control units

 High performance, high frequency microwave electronics

 High bandwidth analog to digital converters

 Major advantage is that

 they are readily available in market

 Cheap

 Developer can cut down his/her development time to a great extent

APS College of Engg,Bengaluru

30

 This network plug-in module gives the TCP/IP connectivity to
the system being developed

 No need to design this module by ourself and write the
firmware for TCP/IP protocol and data transfer

 Everything is ready supplied by the COTS manufacturer

 The major drawback of using COTS

 Manufacturer may withdraw product or discontinue the production
of COTS at any time if a rapid change in technology occurs

 Adversely affects the commercial manufacturer of the embedded
system

Memory

APS College of Engg,Bengaluru

31

 Is an important part of a processor/ controller

based embedded systems

 Some of the processors/ controllers contain built in

memory referred as on-chip memory

 Others do not contain memory inside the chip and

requires external memory to be connected to store the

control algorithm. It is called off-chip memory

 Also some working memory is required for holding

data temporarily during certain operations.

Program Storage Memory (ROM)

APS College of Engg,Bengaluru

32

 Stores the program instructions

APS College of Engg,Bengaluru

33

 Masked ROM

 Is a one time programmable device

 Makes use of the hardwired technology for storing data

 Factory programmed by masking and metallization process
at the time of production itself
 According to the data provided by the end user

 Advantage is low cost for high volume production

 Different process used for the masking process of the ROM
 Creation of an enhancement or depletion mode transistor through

channel implant

 By creating the memory cell either using a standard transistor or a
high threshold transistor

 Limitation is the inability to modify the device firmware
against firmware upgrades

Programmable ROM/OTP

APS College of Engg,Bengaluru

34

 One time programmable memory or PROM is not pre-
programmed by the manufacturer

 End user responsible for programming these devices

 This memory has a nichrome or polysilicon wires
arranged in a matrix

 Wires can be functionally viewed as fuses

 Programmed by a PROM programmer which selectively
burns the fuses according to the bit pattern to be stored.

 Fuses blown/burned represent logic ‘0’ else logic ‘1’

 OTP widely used for commercial production of
embedded systems

 OTPs cannot be reprogrammed

APS College of Engg,Bengaluru

35

 EPROM

 OTPs not useful and worth for development purpose

 During development phase code is subject to continuous
changes and using OTP each time to load the code is not
economical

 EPROM gives the flexibility to reprogram the same chip

 EPROM stores the information by charging the floating gate
of an FET

 EPROM contains a quartz crystal window for erasing the
stored information

 Erasing the device is a tedious and time consuming process

APS College of Engg,Bengaluru

36

 EEPROM

 The information contained in the EEPROM memory can

be altered by using electrical signals at the

register/byte level

 They can be erased and reprogrammed in-circuit

 The only limitation is their capacity when compared

with standard ROM

APS College of Engg,Bengaluru

37

 FLASH

 Latest and most popular ROM technology

 FLASH is a variation of EEPROM technology

 Combines the re-programmability of EEPROM and the

high capacity of standard ROMS

 Memory is organized as sectors(blocks) or pages

 Erasing of memory can be done at sector level or page

level without affecting other sectors or pages

 Each sector/page should be erased before re-

programming

APS College of Engg,Bengaluru

38

 NVRAM

 Non-Volatile RAM is a RAM with battery backup

 Contains static RAM based memory and a minute

battery for providing supply to the memory in the

absence of external power supply

 Memory and battery are packed together in a single

package

 Life span expected to be around 10 years

Read-Write Memory/ RAM

APS College of Engg,Bengaluru

39

 RAM is the data memory or working memory of the

controller/processor

 Controller/processor can read from it and write to it

 RAM is

 Volatile

 Direct Access memory

 RAM falls into three categories

 SRAM, DRAM, and non-volatile RAM

Static RAM

APS College of Engg,Bengaluru

40

 Stores data in the form of voltage

 Made up of flipflops

 Is the fastest from of RAM available

 SRAM is fast in operation due to its resistive

networking and switching capabilities

Dynamic RAM

APS College of Engg,Bengaluru

41

 Stores data in the form of charge

 Made up of MOS transistors

 Advantages of DRAM

 High density and low cost compared to SRAM

 Disadvantage

 Information is stored as charge it gets leaked off with
time

 To prevent this they need to be refreshed periodically

 Refresh operation is done periodically in milliseconds
interval

 Made up of 6 CMOS
transistors (MOSFET)

 Doesn’t require refreshing

 Low capacity (Less dense)

 More expensive

 Fast in operation. Typical
access time is 10ns

 Made up of a MOSFET
and a capacitor

 Requires refreshing

 High Capacity (Highly
dense)

 Less expensive

 Slow in operation due to
refresh requirements.
Typical access time is 60
ns. Write operation is
faster than read operation

42

APS College of Engg,Bengaluru

SRAM Cell DRAM Cell

APS College of Engg,Bengaluru

43

 NVRAM

 Non-Volatile RAM is a random access memory with

battery up

 Contains static RAM based memory and a minute

battery for providing supply to the memory in the

absence of external power supply.

 Memory and battery packed together in a single

package

APS College of Engg,Bengaluru

44

Memory according to the type of interface

 Interface of memory with processor/controller can be
of various types

 Parallel data lines

 Serial interface like I2C

 SPI (serial peripheral interface, 2+n line interface)

 Can also be a single wire interconnection

 Serial interface is commonly used for data storage
memory like EEPRO

 Memory density

 serial memory is usually expressed in kilobits

 Parallel interface memory is expressed in terms of kilobytes

APS College of Engg,Bengaluru

45

Memory Shadowing

 Generally execution of a program or a configuration from
ROM is very slow (120 to 200 ns) compared to the
execution from RAM (40 to 70 ns)

 Shadowing is a technique used to solve the execution speed
problem in processor based systems

 In computer systems and video systems there will be a
configuration holding ROM called Basic Input Output
Configuration ROM (BIOS)

 In personal computer systems BIOS stores hardware
configuration information

 Usually BIOS is read and the system is configured according to it
during boot-up and it is time consuming

APS College of Engg,Bengaluru

46

 Manufacturers include a RAM behind the logical

layer of BIOS at its same address as a shadow to

the BIOS

 First step that happens during the boot-up is copying

the BIOS to the shadowed RAM and write protecting

the RAM then disabling the BIOS reading

Memory Selection for Embedded Syst

APS College of Engg,Bengaluru

47

 Embedded systems require a program memory for
holding the control algorithm or embedded OS and the
applications designed to run on top of it

 Data memory for holding variables and temporary data
during task execution

 Memory for holding non-volatile data which are modifiable
by the application

 Memory requirement for an embedded system is solely
dependent on

 The type of embedded system

 Applications for which it is designed

APS College of Engg,Bengaluru

48

 Lot of factors need to be considered when selecting the type and
size of the memory for embedded system

 If ES is designed using SOC or a microcontroller with on-chip RAM and
ROM

 Thumb rule

 Identify system requirement based on the type of the processor

 Decide whether on-chip memory is sufficient or external memory is required.

 Example: A simple electronic Toy

 If ES is based on RTOS, RTOS requires

 Certain amount of RAM for execution

 ROM for storing the RTOS image

 Normally binary code for RTOS kernel containing all the services is
stored in a non-volatile memory as either compressed or non-
compressed data

 During boot up the RTOS files are copied from storage memory,
decompressed if required and loaded to the RAM for execution

APS College of Engg,Bengaluru

49

 There are two parameters for representing a memory

 Size of the memory chip

 Word size of the memory

 Size of the memory chip

 There's no option to get the memory chip with exact required
number of bytes

 Chips come in standard sizes

 512 bytes, 1Kbytes, 2K, 4K, 8K, 16K, 32K, 64K,128K,

256K,512K,1024K etc

 Word size

 Refers to the number of bits that can be read/write at a time

 4,8,12,16,24,32 etc are the word sizes supported by memory
chips

 Word size should match with data bus width of the
processor/controller

APS College of Engg,Bengaluru

50

 FLASH memory is the popular choice for ROM in
embedded applications

 Powerful and cost-effective solid stage storage
technology for mobile electronics devices and other
consumer applications

 FLASH comes in two major variants

 NAND flash
 High density low cost non-volatile storage memory

 NOR flash
 Less dense and slightly expensive

 Supports XIP

 Good practice to use a combination of NOR and NAND
memory for storage requirements

APS College of Engg,Bengaluru

51

 EEPROM data storage memory is available as either serial
or parallel interface chip

 if the processor/controller of the device supports serial
interface

 Amount of data to write and read to and from the device is less

 Better to have a serial EEPROM chip

 Saves the address space of the total system

 Memory capacity of serial EEPROM is expressed in bits or kilobits

 For embedded systems with low power requirements choose
low power memory devices

 Certain ES may be targeted for operation at extreme
environmental conditions

 Select industrial grade memory chip in place of commercial
grade chip

Sensors and Actuators

APS College of Engg,Bengaluru

52

 Embedded system is in constant interaction with the real
world

 Controlling and monitoring

 Changes in the system environment or variables are
detected by the sensors connected to the input port of
the embedded system

 Embedded system may be designed for

 Controlling purpose

 Will produce some changes in the controlling variable to bring the
controlled variable to the desired value

 Monitoring purpose

 No need to include an actuator

APS College of Engg,Bengaluru

53

 A sensor is a transducer that converts energy from

one form to another for any measurement or control

purpose

 Actuator is a form of transducer device which

converts signals to corresponding physical action.

 Acts as an output device

I/O subsystem

APS College of Engg,Bengaluru

54

 I/O subsystem facilitates the interaction of the
embedded system with the external world.

 Interaction happens through sensors and actuators

 Light Emitting Diode

 Important output device for visual indication

 Used as an indicator for the status of various

signals and situations

 Device ON, Battery LOW, Charging of Battery

 LED is a p-n junction diode

 LED can be directly interfaced to the port pin of a
processor/controller

 Anode is directly connected

 Cathode is connected

7 segment LED display

APS College of Engg,Bengaluru

55

 Output device for displaying alphanumeric

characters

 Contains 8 LED segments

 7- for alphanumeric display

 1- for representing decimal point

 All 8 LED segments need to be connected to one port of the
processor/controller for displaying alphanumeric digits

 Two configurations for display

 Common anode

 Common cathode

 Current through each segment is limited by current limiting
resistor

 Popular choice for low cost embedded applications

APS College of Engg,Bengaluru56

Optocoupler

APS College of Engg,Bengaluru

57

 Solid state device which isolates two parts of the circuit

 Combines an LED and a photo transistor in a single

housing

 Used for suppressing interference in data

communication, circuit isolation

 Can be used either in input circuits or in output circuits

Relay

APS College of Engg,Bengaluru

58

 It’s a electromechanical device

 Acts as a dynamic path selectors for signals and power
in an embedded application

 Contains a relay coil made up of insulated wire on a
metal core and a metal armature with one or more
contacts

 Works on electromagnetic principle

 Available in different configurations

APS College of Engg,Bengaluru

59

 Single pole single throw

 Has only one path for information flow

 Path is either closed or open in normal condition

 Relay is controlled using a relay driver circuit connected

to the port pin of the processor/controller

Peizo Buzzer

APS College of Engg,Bengaluru

60

 Peizo electric device for generating audio indications

 Contains a piezoelectric diaphragm which produces
audible sound in response to the voltage applied to it

 Available in two types

 Self driving

 Contains all the necessary components to generate sound at a
predefined tone

 External driving

 Supports the generation of different tones

 Tone can be varied by applying a variable pulse train

 Can be directly interfaced to the port pin of the
processor/controller

Push button switch

APS College of Engg,Bengaluru

61

 Its an input device

 Comes in two configurations

 Push to make

 Switch is normally in the open state

 Makes a contact when it is pressed or pushed

 Push to break

 Switch is normally closed

 Breaks the circuit contact when it is pushed or pressed

 Used for generating a momentary pulse

 Used as reset and start switch and pulse generator

Communication Interface

APS College of Engg,Bengaluru

62

 Essential for communicating with various subsystems of

the embedded system and with the external world

 Communication interface can be viewed in two different

perspectives

 Device/board level communication interface (onboard)

 Product level communication interface (External)

 Embedded product is a combination of different types

of components arranged on a PCB

 device/board level communication interface

 Serial interfaces- I2C, SPI, UART, 1-wire

 Parallel bus interface

Onboard Communication Interfaces

APS College of Engg,Bengaluru

63

 Refers to the different communication channels/buses

for interconnecting the various integrated circuits and

other peripherals within the embedded system

Inter Integrated Circuit Bus (I2C)

 synchronous bi-directional half duplex two wire serial

interface bus

 Intention was to provide an easy way of connection between

a microprocessor/controller system and the peripheral chips

in television sets

 Comprises of two bus lines

 SCL

 SDA

APS College of Engg,Bengaluru

64

 Devices connected to the I2C bus can act as either ‘Master’
device or ‘Slave’ device.

 Role of a Master

 responsible for controlling the communication by
initiating/terminating data

 Sending data and generating necessary synchronization clock
pulses

 Role of a Slave

 Wait for the master and respond upon receiving the commands

 Master and slave devices can act as either transmitter or
receiver

 I2C supports multi masters on the same bus

 I2C bus interface is built
around an input buffer
and an open drain or
collector transistor

 When bus is in idle state

 Open drain/ collector
transistor will be in the
floating state

 SDA and SCL line switch to
the ‘high impedance’ state

 Address is assigned by
hardwiring the address
lines of the device to the
desired logic level

65

APS College of Engg,Bengaluru

•

•

SPI(Serial Peripheral Interface) Bus

APS College of Engg,Bengaluru

66

 Synchronous bidirectional full duplex four-wire serial
interface bus

 SPI is a single master multi-slave system

 Possible to have a system with more than one master

 Condition that only one master device is active at any given point
of time

 Requires four signals for communication

 MOSI – Master out Slave In

 MISO - Master In Slave Out

 SCLK – Serial Clock

 SS – Slave Select

 Most suitable for applications which require transfer of data
in streams

 Doesn’t support an acknowledgement mechanism

APS College of Engg,Bengaluru67

UART

APS College of Engg,Bengaluru

68

 Asynchronous form of serial data transmission

 Doesn’t require a clock signal to synchronize
transmitting end and receiving end for transmission

 Relies on the pre-defined agreement between the
transmitting and receiving device

 Baud rate

 Number of bits per byte

 Parity

 Number of start bits and stop bit and flow control

 Start and Stop of communication is indicated through
special bits in the data stream

APS College of Engg,Bengaluru69

1-wire Interface

APS College of Engg,Bengaluru

70

 Asynchronous half duplex communication protocol

 Developed by maxim dallas semiconductor

 Makes use of a single signal line (wire) called DW

for communication

 Follows master-slave communication model

 Allows power to be sent along the signal wire as

well

 Supports single master and one or more slave

devices on the bus

APS College of Engg,Bengaluru

71

EMBEDDED SYSTEMS DESIGN

CONCEPT

Module 41

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

CHARACTERISTICS OF AN ES

1. Application and Domain specific

 Each embedded system is having certain functions to
perform and are designed to do the intended functions only

 Cannot replace ES designed for a particular domain with
another

2. Reactive and Real Time

 ES are in constant interaction with real world through
sensors and defined input devices

 Control algorithm reacts in a designed manner

 Event may be a periodic or an unpredicted one
 Unpredicted events are captured by scheduling the systems

 Real time systems, timing behavior is deterministic

3. Operates In harsh environments

 ES could be installed in a dusty or a high temperature zone,
subject to vibrations and shock

2

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

4. Distributed

 ES may be a part of larger system

 Many such distributed ES form a single large ECU

 E.g. Automatic vending machine, Automatic Teller

Machine (ATM)

5. Small size and weight

 Product aesthetics is an important factor in choosing a

product

 People believe in phrase “ Small is beautiful”

6. Power concerns

 Power management is an important factor in designing

ES.

 ES should be designed to minimize the heat dissipation by

the system

 Ultra low power components are available in the market
3

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

QUALITY ATTRIBUTES OF ES

 Non functional requirements that need to be
documented properly

 Broadly classified into two

 Operational QA & Non-operational QA

Operation QA

1. Response

 Measure of quickness of the system

 Gives an idea on how fast the system is tracking the
changes in input variables

 E.g ES deployed in flight control system

2. Throughput

 Deals with efficiency of the system

 Rate of production or operation of a defined process
over a stated period of time

 Generally measured in terms of ‘Benchmark’ 4

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

3. Reliability

 Measure of how much % you can rely upon the proper

functioning of the system.

 % susceptibility of the system to failures

 Mean time Between Failure (MTBF) and Mean Time to

Repair (MTTR) are the terms used in defining system

reliability

 MTBF

 Gives the frequency of failures in hours/weeks/months

 MTTR

 Specifies how long the system is allowed to be out of order

following a failure

 It should be in terms of minutes in case of critical application

need

5

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

4. Maintainability

 Deals with support and maintenance to the end user or

client

 in case of technical issues and product failures or on the basis

of routine system check up

 A more reliable system means a system with less

corrective maintainability requirements

 As the reliability of the system the chances of failure

and non-functioning also and thereby need for

maintainability is also

 Maintainability is broadly classified into two categories

 Scheduled or periodic maintenance (Preventive Maintenance)

 E,g Replacement of cartridge in a printer

 Maintenance to unexpected failures (Corrective Maintenance)

 E.g Paper feeding of the printer fails

 Ideal value for availability is expressed as

Ai = MTBF/(MTBF+MTTR)
6

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

4. Security

 Confidentiality, Integrity and availability are the three
major measures of information security

 A good example of the security aspect in an embedded
product is a PDA

 PDA can either be a shared resource or an individual one

 If its shared, then there should be some mechanism in the form of
user name and password to access into a particular persons
profile

5. Safety

 Safety and Security are two confusing terms

 They represent two unique aspects in quality attributes

 Safety deals with the possible damages that can happen to
the operators, public and the environment due to the
breakdown of an embedded system or due to the emission
of radioactive or hazardous materials from the embedded
products

 Safety analysis is a must in product engineering to
evaluate the anticipated damages and determine the best
course of action 7

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

NON OPERATIONAL QUALITY ATTRIBUTES

 The quality attributes that needs to be addressed
for the product ‘not’ on the basis of operational
aspects

 Testability and Debug-ability

 Evolvability

 Portability

 Time to prototype and market

 Per unit and total cost

 Testability and Debug-ability

 Deals with how easily one can test his/her design
application and by which means he/she can test it

 Testability is applicable to both the embedded hardware
and firmware

 Debug-ability is a means of debugging the product as
such for figuring out the probable sources that create
unexpected behavior in the total system 8

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

 Evolvability

 It’s a term closely related to Biology

 Evolvability is referred as the non-heritable variation

 For an embedded system evolvability refers to the ease
with which the embedded product can be modified to
take advantage of new firmware or hardware
technologies

 Portability

 It’s a measure of system independence

 An embedded product is said to be portable if its
capable of functioning as such in various environments,
target processor/controllers and embedded operating
systems

 A standard embedded product should always be flexible
and portable

 Portablility with respect ot migration of embedded
firmware written for one target processor to a different
target processor

 Program written in high level language vs assembly
level language

9

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

 Time to prototype and market

 It is the time elapsed between the conceptualization of

product and the time at which the product is ready for

selling or use.

 The commercial embedded product market is highly

competitive and time to market the product is a critical

factor in the success of a commercial embedded product

 There may be multiple players in the industry who develop

products of the same category e.g mobile phone

 If you come up with the design and it takes long time to

develop and market it

 The competitor product may take advantage of it with their

product

 Embedded technology is one where rapid technology

change is happening

 Start designing using new technology and it takes longtime to

develop and market the product.

 By the time product reaches the market, the technology might

have superseded with new technology

10

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

 Product prototyping helps in reducing time-to-market

 Time to prototype is also another critical factor

 If prototype developed faster the development time can be brought

down significantly

 In order to shorten the time to prototype, make use of options such

as off-the –shelf components, reusable assets etc

 Per Unit Cost and Revenue

 Cost is a factor which is closely monitored by both end user

and product manufacturer

 Cost is a highly sensitive factor for commercial products

 Any failure to position the cost of a commercial product at a

nominal rate may lead to the failure of the product in the

market

 Proper market study and cost benefit analysis should be

carried out before taking a decision on the per-unit-cost of

the embedded product

 From a designer/product development company perspective

the ultimate aim of a product is to generate marginal profit.
11

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

12

EMBEDDED SYSTEM-APPLICATION AND

DOMAIN SPECIFI

 Embedded Systems are highly specialized in
functioning and are dedicated for a specific
application

 It is therefore not possible to replace an embedded
system developed for a specific application in a
specific domain with another embedded sys
designed for some other application in some other
domain

 People experience the power of embedded systems
and enjoy the features and comfort provided by
them

 They are totally unaware or ignorant of the
intelligent embedded players working behind the
products providing enhanced features and comfort 13

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

WASHING MACHINE- APPLICATION

SPECIFICIED EMBEDDED SYSTEM

 Components of washing machine in which some are

visible and some are invisible

 Actuator

 Motorized agitator

 Tumble tub

 Water drawing pump

 Inlet valve to control the flow of water into the unit

 Sensor

 Water temperature sensor

 Level sensor

 Control

 Microprocessor/controller based board with interfaces to sensors

and actuators

 Provides connectivity to user interfaces like

 Keypad for setting th washing time, type of material to be

washed

 User feedback is reflected through

 LED’s and display unit connected to the control board

14

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

15

AUTOMOTIVE-DOMAIN SPECIFIC EXAMPLES

OF EMBEDDED SYSTEM

 The major application domains of embedded systems are

consumer, industrial, automotive, telecom etc..

 Telecom and automotive holds a big market share for

embedded systems

Inner workings of Automotive Embedded systems

 Automotive embedded systems are the one where

electronics take control over the mechanical systems

 The presence of automotive embedded system in a vehical

varies from simple mirror and wiper controls to complex

air bag controller and anitlock brake system(ABS)

 Automotive embedded systems are normally built around

microcontrollers or DSPs or a hybrid of the two and are

generally known as ECUs 16

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

 The number of embedded controllers in an ordinary

vehicle varies from 20 to 40

 Mercedes and BMW may contain 75 to 100 ECU

 Government regulations on fuel economy,

environmental factors, emission standards and

increasing demands on safety, comfort and

infotainment forces automotive manufactures to opt

for sophisticated ECUs

17

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

 ECUs used in the automotive industry can be broadly

classified into

 High Speed embedded control units

 Low Speed embedded control units

 High Speed Electronic Control Units

 Deployed in critical control units requiring fast response

 It includes

 Fuel injection Systems

 Antilock brake Systems

 Engine control

 Electronic Throttle

 Steering Controls

 Transmission control

 Central Control Unit

 Low Speed ECUs

 Deployed in applications where response time is not so critical

 Built around low cost microprocessor/microcontrollers and DSPs

 Audio controllers, passenger and driver door locks, door glass

controls, wiper control, mirror control, seat control systems, head

lamp, tail lamp controls, sun roof control unit etc

18

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

 Automotive Communication Buses

 Makes use of simple serial buses for communication

 Greatly reduces the amount of wiring inside a vehicle.

 Different types of serial interface buses deployed

in automotive embedded applications

1. CAN (Controller Area Network)

 Originally proposed by Robert Bosch

 Supports medium speed (ISO11519-Class B with data

rates upto 125 Kbps) and High speed(ISO11898

Class C with data rates upto 1 Mbps) data transfer

 CAN is an event driven protocol interface with

support for error handling in data transmission

 Generally employed in safety system like

 Airbag control, power train systems like engine control and

ABS and navigation system like GPS 19

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

2. LIN (Local Interconnect Network)

 LIN bus is a single master multiple slave communication

interface

 LIN is a low speed, single wire communication interface

with support for data rates upto 20Kbps and is used for

sensor/actuator interfacing

 LIN bus follows the master communication triggering

technique to eliminate the possible bus arbitration

problem that can occur by simultaneous talking of

different slave nodes connected to a single interface bus.

 LIN bus is employed in applications like mirror controls,

fan controls, seat positioning controls, window controls,

and position controls where response time is not a critical

issue

20

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

 MOST (Media-Oriented System Transport) Bus

 Targeted for automotive audio/video equipment interfacing,

used primarily in European cars

 A MOST bus is a multimedia fibre-optic point-to-point

network implemented in

 Star, Ring or daisy chained topology over OFC

 Then MOST bus-specifications define Physical layer as well

as application layer, network layer and media access

control.

 MOST bus is an optical fiber cable connected between

Electrical Optical Converter (EOC) and Optical Electrical

Converter (OEC) which would translate into the optical

cable MOST bus

21

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

Key Players of the Automotive Embedded Market

 The key players of the automotive embedded market

can be visualized in three verticals

 Silicon Providers

 Solution Providers

 Tools and platform Providers

 Silicon Providers

 Responsible for providing necessary chips which are used in

the control application development

 Chip may be a standard product like microcontroller or

DSP or ADC/DAC chips

 Some applications require specific chips and they are

manufactured as ASIC.

22

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

 The leading silicon providers in the automotive
industry are

 Analog Devices
 Provider of world class digital signal processing chips

 Precision analog microcontrollers

 Programmable inclinometer/accelerometer

 LED drivers

 For automotive signal processing applications, driver assistance
systems, audio system, GPS/Navigation system

 Xilinx
 Supplier of high performance FPGAs, CPLDs and automotive

specific IP cores for

 GPS navigation systems

 Driver Information Systems

 Distance Control

 Collision Avoidance

 Rear Seat entertainment

 Adaptive Cruise Control

 Voice Recognition etc 23

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

 Atmel
 Supplier of cost effective high density flash controllers and

memories

 Provides a series of high performance microcontrollers

 A wide range of ASSP (Application Specific Standard Products)

 For chasis, body electronics, security, safety and car infotainment
and automotive networking products for CAN, LIN and Flex Ray

 Maxim/Dallas
 Supplier of world class analog, digital and mixed signal products ,

R F components for all kinds of automotive solutions

 NXP Semiconductor
 Flash microontrollers

 Renesas
 Provider of high speed microcontrollers and LSI technology for car

navigation systems accommodating three transfer speeds

 High, Medium and Low

 Texas Instruments
 Supplier of microcontrollers, digital signal processors and

automotive communication control chips for LIN bus protocol
24

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

 Fujitsu

 Supplier of finger print sensors for security applications, graphic

display controller for instrumentation application

 AGPS/GPS for vehicle navigation system and different types of

microcontrollers for automotive control applications

 Infineon

 Supplier of high performance microcontrollers and customized

application specific chips

 NEC

 Provider of high performance microcontrollers

 Tools and Platform providers

25

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

HARDWARE SOFTWARE CO-DESIGN AND

PROGRAM MODELING

 In traditional embedded system development

approach, the hardware software partitioning is

done at an early stage

 Software engineers take care of the software

architecture development and implementation

 Hardware engineers responsible for building the

hardware required for the product.

 Less interaction between teams and development

happens either serially or in parallel

 Integration is the next step

 Need for novel approach for embedded system

design in order to reduce the ‘time-to-market’ 26

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

 During co-design process

 The product requirements are captured from the customer

are converted into system level needs or processing

requirements

 At this point it is not segregated as either hardware or

software requirement

 Instead specified as functional requirement

 The system level processing requirements are then

transferred into functions which can be simulated and

verified against performance and functionality

 Architecture design follows the system design

 Partitioning takes place here

 System level requirements are mapped into hardware and/or

software

 Partitioning performed based on the hardware-software trade-offs

27

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

FUNDAMENTALS ISSUES IN HARDWARE

SOFTWARE CO-DESIGN

 The hardware software co-design is a problem
statement

 When tried to solve this statement in real life we may
come across multiple issues in the design

 Fundamental issues in hardware software co-
design

1. Selecting the model

 Models are used for capturing and describing the
system characteristics

 Model is a formal system consisting of objects and
composition rules

 Hard to make design as to which model should be
followed in a particular system design

 Designers switch between a variety of models from
the requirements specification to the
implementation aspect

 Objective varies with each face

28

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

2. Selecting Architecture

 A model only captures the system characteristics and

does not provide information on ‘how the system can be

manufactured?’

 Architecture specifies how a system is going to

implement in terms of the number and types of

different components and the interconnection among

them

 Controller Architecture, Datapath Architecture, CISC,

RISC, Very long Instruction word computing (VLIW)

 Single Instruction Multiple Data (SIMD), Multiple

instruction Multiple Data (MIMD) etc are the

commonly used architecture in system design

 Some of them fall into application specific architecture

class while others fall into either general purpose

architecture class or parallel processing class

29

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

 Controller architecture

 Implements the finite state machine model using a state

register and two combinational circuits

 The state register holds the present state and the

combinational circuits implement the logic for next state

and output

 Datapath Architecture

 Best suited for implementing the data flow graph model

where output is generated as a result of a set of predefined

computations on the input data

 A datapath represents a channel between the input and

output

 In datapath architecture the datapath may contain

registers, counters, register files, memories and ports

along with high speed arithmetic units.

 Ports connect the datapath to multiple buses
30

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

 Finite State Machine Datapath (FSMD)

 Combines the controller architecture with datapath

architecture

 It implements a controller with datapath

 The controller generates the control input whereas the

datapath processes the data.

 The datapath contains two types of I/O ports, out of which

one acts as the control port for receiving/sending the

control signals from/to the controller unit

 The second I/O port interfaces the datapath with external world

for data input and data output

 Normally datapath is implemented in a chip and the I/O

pins of the chip acts as the data input output ports for the

chip resident data path

31

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

 The complex instruction set computing (CISC)

 This architecture uses an instruction set representing

complex operations

 It is possible for a CISC instruction set to perform a large

complex operation with a single instruction

 The use of a single complex instruction in place of

multiple simple instructions greatly reduces the program

memory access and program memory size requirement

 It requires additional silicon for implementing microcode decoder

for decoding the CISC instruction

 The datapath for the CISC processor is complex

 RISC architecture uses instruction set representing

simple operations and it requires the execution of

multiple RISC instructions to perform a complex

operation

 The datapath of RISC architecture contains a large

register file for storing the operands and output

 RISC supports externsive pipelining

32

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

 The Very Long Instruction Word (VLIW)

 Architecture implements multiple functional units in

the datapath

 The VLIW instruction packages one standard

instruction per functional unit of the datapath

 Parallel Processing Architecture

 Implements multiple concurrent processing elements

and each processing element may associate a datapath

containing register and local memory

 Single Instruction Multiple Data (SIMD) and Multiple

instruction multiple data (MIMD) are examples of

parallel processing architecture

 SIMD

 A single instruction is executed in parallel with the help of the

proceesing elements

 The scheduling of the instruction execution and controlling of

each PE is performed through a single controller

 SIMD architecture forms the basis of reconfigurable processor

33

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

 MIMD

 The MIMD architecture forms the basis of multiprocessor

systems.

 The PEs in a multiprocessor system communicates through

mechanisms like shared memory and message passing

Select Language

 A Programming language captures a ‘Computational Model’ and

maps it into architecture

 There is no hard and fast rule to specify this language should be

used for capturing this model.

 A model can be captured using multiple programming languages

like C,C++, C#, Java etc for software implementations

 Languages like VHDL, System C, Verilog etc for hardware

implementations

 A single model can be used for capturing a variety of models

 Certain models are good in capturing certain computational

models

 The only pre-requisite is selecting a programming language for

capturing a model is that the language should capture the model

easily

34

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

Partitioning System Requirements into

hardware and software

 From the implementation perspective, it may be

possible to implement the system requirements in

either hardware or software.

 It’s a tough decision making task to figure out which

one to opt.

 Various hardware-software trade-offs are used for

making decision on the hardware-software

partitioning.

35

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

COMPUTATIONAL MODELS IN EMBEDDED

DESIGN

Some of the commonly used computational

models

 Data Flow Graph (DFG) model

 State machine model

 Concurrent process model

 Sequential program model

 Object oriented model

36

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

Data Flow Graph Model

 DFG model translates the data processing
requirements into a data flow graph

 DFG graph is a data driven model in which program
execution is determined by data

 This model emphasizes on the data and operation on
the data which transforms the input data to output
data

 DFG is a visual model in which the operation on the
data(process) is represented using a block (circle) and
data flow is represented using arrows

 An inward arrow represents input data and an outward
arrow represents output data

 Embedded applications which are
computational intensive and data driven are
modeled using DFG

 DSP applications are typical examples for it
37

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

38

Control Data Flow Graph/Diagram (CDFG)

 Its seem that DFG model is a data driven model in

which execution is controlled by data and it doesn’t

involve any control operations (Conditional)

 The CDFG model is used for modeling applications

involving conditional program execution.

 CDFG models contain both data operations and control

operations

 The CDFG uses data flow graph (DFG) as elements

and conditional constructs as decision makers

 CDFG contains both data flow nodes and decision

nodes

39

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

40

 Real world example modeling the embedded

application using CDFG is the capturing and saving

of the image to a format set by the user in a digital

still camera where everything is data driven starting

from the Analog front end which converts the CCD

sensor generated analog signal to digital signal and

the task which stores the data from ADC to a frame

buffer for the use of a media processor which

performs various operations like auto correction,

while balance adjusting etc.

 The decision on in which format the image is stored

is controlled by the camera setting configured by the

user

41

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

State Machine Model

 The state machine model is used for modeling

reactive or event driven embedded systems whose

processing behavior are dependent on state

transitions

 Embedded systems used in the control and industrial

applications are typical examples for event driven

systems

 The state machine model describes the system

behavior with states, events , actions and

transitions.

 The state is a representation of a current situation.

 An event is an input to the state. It acts as a stimuli for

state transition

 Transition is the movement from one state to another.

 Action is activity performed by the state machine
42

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

 A FSM model is one in which the number of states are
finite.

 The system is described using a finite number of possible
states

Driver/ Passenger seat belt warning

 When the vehicle ignition is turned on and the seat
belt is not fastened within 10 seconds of ignition ON,
the system generates an alarm signal for 5 seconds

 The alarm is turned off when the alarm time (5 secs)
expires or if the driver/passenger fastens the belt or if
the ignition switch is turned off, whichever happens
first

 Here states are

 ‘Alarm off’, Waiting, Alarm on,

 Events are

 Ignition key on, Ignition key off, Timer expire, Alarm time
expire and seat belt on 43

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

44

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

45

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

46

Sequential Program Model

 The functions or processing requirements are

executed in sequence

 It is same as the conventional procedural

programming

 Here the program instructions are iterated and executed

conditionally and the data gets transformed through a

series of operations

 FSMs are a good choice for sequential program

modelling

 Another important tool used for modelling

sequential program is flow charts

Flow chart approach for seat belt warning

system 47

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

Concurrent/ Communicating Process Model

 This model models concurrent executing
tasks/processes

 It is easier to implement certain requirements in
concurrent processing model than the conventional
sequential execution

 Sequential execution leads to a single sequential
execution of task and thereby leads to poor processor
utilization, when the task involves I/O waiting,
Sleeping for specified duration

 If the task is divided into multiple subtasks, it is
possible to tackle the CPU usage effectively, when the
subtask under execution goes to a wait or sleep mode,
by switching the task execution

 Concurrent process model requires additional
overheads in task scheduling, task synchronization and
communication 48

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

49

 Implementing Seat

belt warning system

in concurrent process

model

 We can split the task

into

 Timer task for waiting

10 seconds

 Task for checking the

ignition key status

 Task for checking seat

belt status

 Task for starting and

stopping the alarm

 Alarm time task for

waiting 5 seconds

Object Oriented Model

 The Object Oriented model is an object based model

for modeling system requirements

 It disseminates a complex software requirement into

a simple well defined pieces called objects

 Object-oriented model brings

 Re-usability, maintainability and productivity in system

design

 In object-oriented modeling object is an entity used

for representing or modeling a particular piece of the

system

 Each object is characterised by a set of unique

behavior and state

 A class is an abstract description of a set of objects

and it can be considered as a blue print of an object 50

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

51

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

52

EMBEDDED FIRMWARE DESIGN

AND DEVELOPMENT

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

53

 Embedded firmware is responsible for controlling

the various peripherals of the embedded hardware

and generating response in accordance with the

functional requirements mentioned in the

requirements for the particular embedded product

 Firmware is considered as the master brain of the

embedded system

 Most of the embedded systems are less adaptive or

non-adaptive

 For most of the embedded products the embedded

firmware is stored at a permanent memory (ROM)
54

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

 Designing embedded firmware requires
understanding of the particular embedded product
hardware, like:

 various component interfacing,

 memory map details

 I/O port details

 Configuration and register details of various hardware
chips used

 Some programming language

 Embedded firmware development process starts
with the conversion of firmware requirements into
a program model

 Using modeling tools like UML or flow chart based
representation

 Once program model is created the next step is the
implementation of the tasks and actions by
capturing the model using a language 55

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

EMBEDDED FIRMWARE DESIGN

APPROACHES

 The firmware design approaches for embedded

product is purely dependent on:

 The complexity of the function to be performed

 The speed of the operation required etc

 The two basic approaches used for embedded

firmware design

 Conventional procedural based design

 Also known as the Super Loop Model

 Embedded operating system based design

56

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

The Super Loop Based Approach

 Adopted for applications that are not time critical

and where the response time is not so important

 Very similar to a conventional procedural

programming

 Code is executed task by task

 The task listed at the top of the program code is

executed first and the task just below are executed

after completing the first task

 The firmware execution flow for this

57

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

 Almost all tasks in embedded applications are non-ending

and are repeated infinitely throughout the operation

 Since the tasks are running inside an infinite loop, the

only way to come out of the loop is either a hardware

reset or an interrupt assertion

 Super loop based design doesn’t require an operating

system

 This type of design is deployed in low cost embedded

products

 Typical example isunit an electronic video game toy containing

keypad and display

58

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

 The super loop based design is :

 Simple and straight forward

 No OS related overheads

 Major drawbacks

 Any failure in any part of a single task will affect the

total system

 If the program hangs up at some point while executing

a task, it will remain there forever and ultimately

product stops functioning

 There are remedial measures for overcoming this

 Use of hardware and software Watch Dog Timers

 Lack of real timeliness

 If the number of tasks to be executed increases the time at

which each task is repeated also increases

59

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

Embedded Operating System Based
Approach

 The operating system based approach contains
operating systems

 General purpose (GPOS) or real time (RTOS)

 General purpose based is very similar to
conventional PC based application development

 Device contains an OS and you will be running user
applications on it

 OS based applications also require ‘Driver
software’ for different hardware present on the
board to communicate with them

 Real Time OS is employed in products
demanding real time response

 RTOS respond in a timely and predictable
manner to the events

60

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

 Real time OS contains

 Real Time kernel

 Responsible for performing pre-emptive multitasking

 Scheduler for scheduling tasks, multiple threads etc

 Real time OS allows flexible scheduling of system

resources like the CPU and memory and offers

some way to communicate with the tasks

61

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

EMBEDDED FIRMWARE DEVELOPMENT

LANGUAGES

Assembly language based development

 ‘Assembly language’ is human readable notation

of machine language

 Whereas machine language is a processor

understandable language

 Processor only deals with 1’s and 0’s

 Machine language is made readable by using specific

symbols called ‘mnemonics’

 Assembly language and machine languages are

processor/controller dependent and an assembly

program written for one processor/controller family

will not work with others
62

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

63

Advantages of high level language based development

 Efficient code memory and data memory usage

(memory optimization)

 Since the developer is well versed with the target processor

architecture and memory organization, optimized code can be

written for performing operations

 This leads to less utilization of code memory and effective utilization

of data memory

 High performance

 Optimized code not only improves the code memory usage but also

improves the total system performance

 Through effectively assembling coding, optimum performance can be

achieved for a target application

 Low level hardware access

 Most of the code for low level programming like accessing external

device specific registers from the operating system kernel, device

drivers and low level interrupt routines etc are making use of direct

assembly coding since low level device specific operation support is

not commonly available with most of the high-level language cross

compilers

64

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

 Code reverse engineering

 It’s a process of understanding the technology behind a
product by extracting the information from a finished
product

 Its performed by hawkers to reveal the technology
behind proprietary products

 Though most of them have memory protection, it may be
possible to break and read the code memory

 It can be easily converted into assembly code using a dis-
assembler program for the target machine

Drawbacks of Assembly language based
development

 High development time

 Assembly language is much harder to program than high
level languages

 The developer must pay attention to more details and
must have thorough knowledge of the architecture,
memory organization and register details of the target
processor

65

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

 Developer Dependency

 There is no common written rule for developing

assembly language based applications whereas all high

level languages instruct certain set of rules for

application development.

 In assembly language programming, the developers will

have freedom to choose the different memory locations

and registers

 Also the programming approach varies from developer to

developer depending on his/her taste

 Non- Protable

 Target application written in assembly instructions are

valid only for that particular family of processors and

cannot be reused for another target processors/

controllers

66

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

HIGH LEVEL LANGUAGE BASED

DEVELOPMENT

 Assembly language based programming is highly time
consuming, tedious and requires skilled programmers
with sound knowledge of the target processor
architecture.

 Also applications developed in assembly language are
non portable.

 Any high level language with a supported cross
compiler for the target processor can be used for
embedded firmware development

 The most commonly used high level language for
embedded firmware application development is C

 Most of the high level languages support modular
programming approach and hence you can have
multiple source files called modules

 Translation of high level source code to executable
object code is done by a cross compiler

67

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

68

Advantages of high level language based

development

 Reduced Development time

 Developer requires less or little knowledge on the

internal hardware details and architecture of the target

processor/ controller

 Bare minimal knowledge of the memory organization

 register details of the target processor in use

 syntax of the high level language

 The ramp up time required by the developer in

understanding the target hardware and target machines

assembly instruction is waived off by the cross compiler

 Developer independency

 The syntax used by most of the high level languages are

universal and a program written in high level language

can easily be understood by a second person knowing the

syntax of the language
69

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

 Portability
 Target applications written in high level languages are

converted to target processor/controller understandable format
by a cross compiler

 An application written in high level language for a particular
target processor can be easily converted to another target
processor/controller specific application

 Involves little or less effort by simply re-compiling/little code
modification followed by re-compiling the application for the
required target processor/controller

Limitations of high level language based
development

 The merits offered by high level language based design
take advantage over its limitations

 Some cross compilers available for high level languages
may not be so efficient in generating optimised target
processor specific instructions

 The investment required for high level language based
development tools is high compared to assembly language
based firmware development tools

 Hardware access time is critical

70

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

MIXING ASSEMBLY AND HIGH LEVEL

LANGUAGE

71

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

PROGRAMMING IN EMBEDDED C

 Whenever the conventional C language and its

extension are used for programming embedded

systems, it is referred as ‘Embedded C’

programming

 Programming in embedded C is quite different

from conventional desktop application

development using C language for a particular

OS platform

 Desktop developers have resources in surplus

which is not the case with embedded application

developer
72

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

73

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

C Embedded C

1. Well Structured, well

defined and standardized

general purpose

programming language

with extensive bit

manipulation support

2. Offers a combination of

features of high level

language and assembly

and helps in hardware

access programming

3. Conventional C follows

ANSI standard and it

incorporates various

library files for different

OS

4. Platform specific

application, known as

compiler is used for the

conversion of programs

written in C to the target

processor

1. Can be considered subset

of conventional C

language

2. Supports all C

instructions and

incorporates a few target

processor specific

functions/instructions

3. A software program

called cross-compiler is

used for the conversion of

programs written in

embedded C to target

processor/ controller

specific instuctions

Compiler Vs Cross Compiler

74

A
P

S
 C

o
lle

g
e
 o

f E
n

g
g
,B

e
n

g
a

lu
ru

RTOS and IDE for Embedded

System Design

APS College of Engg,Bengaluru

Operating System Basics

 The OS acts as a bridge between user
applications/tasks

 The primary functions of an OS is

◦ Make the system convenient to use

◦ Organize and manage the system resources
efficiently and correctly

 Kernel

◦ Core of the OS

◦ Responsible for:

 Managing the system resources and the communication
among the hardware and other system services

APS College of Engg,Bengaluru

 For a General purpose OS the kernel contains
different services for handling the following

◦ Process Management

 Setting up memory space

 Loading the process code

 Allocating system resources

 Scheduling and managing execution of process

 Setting up and managing the process control block

 Inter process communication and synchronization

 Process termination/deletion

◦ Primary Memory Management

 Refers to RAM

 The MMU of the kernel is responsible for

 Keeping track of which part of the memory is being used by which
process

 Allocating and de-allocating memory space on a need basis

APS College of Engg,Bengaluru

 File System Management
◦ File is a collection of related information
 E.g program (source code or executable), text

files, image files, word documents, audio/video
files, etc

◦ File operation is a useful service provided by
the OS

◦ The file system management service of the
kernel is responsible for
 The creation and deletion and alteration of files

 Creation, deletion and alteration of directories

 Saving of files in the secondary storage memory

 Providing automatic allocation of file space based
on the amount of free space available

 Providing a flexible naming convention of files

APS College of Engg,Bengaluru

 I/O System (Device) Management

◦ Kernel is responsible for routing the I/O

requests coming from different user

applications to the appropriate I/O devices of

the system

◦ In a well structured OS, the direct accessing

of the I/O devices are not allowed

◦ Access to them are provided through a set of

API (Application Programming Interfaces)

exposed by the kernel

◦ Kernel maintains a list of all I/O devices of the

system

APS College of Engg,Bengaluru

◦ The service ‘Device Manager’ of the kernel is

responsible for handling all I/O device related

operations

◦ The device manager is responsible for

 Loading and unloading of device drivers

 Exchanging information and the system specific

control signals to and from the device

APS College of Engg,Bengaluru

 Secondary Storage management
◦ Deals with managing the secondary storage memory

devices

◦ Used as backup medium for programs and data since
the main is volatile

◦ The secondary storage management of kernel deals
with
 Disk storage allocation

 Disk Scheduling

 Free Disk space management

 Protection Systems
◦ Most OS support multiple users with different levels

of access permissions

◦ Protection deals with implementing the security
policies to restrict the access to both user and
system resources

APS College of Engg,Bengaluru

 Interrupt Handler

◦ Kernel provides handler mechanism for all

external/internal interrupts generated

◦ Depending on the type of the OS, a kernel may

contain lesser number of components/services

or more number of components/services

◦ Network communication, network

management, user interface graphics, timer

services, error handler, database management

etc are examples for such components/services

APS College of Engg,Bengaluru

 Kernel Space and User Space

◦ The application services are classified into two
categories, namely

 User application

 Kernel application

◦ The program code corresponding to the kernel
application/services are kept in contiguous area of
primary memory and is protected from un-
authorised access by user programs/applications

◦ The memory space at which the kernel code is
located is known as ‘kernel space’

◦ All user applications are loaded to a specific area
of primary memory and this memory area is
referred as ‘ User Space’

 Memory area where user applications are loaded and
executed

APS College of Engg,Bengaluru

 Monolithic Kernel and Microkernel
◦ Kernel forms the heart of an operating system

◦ Based on the kernel design, they can be classified as
‘Monolithic’ and ‘Micro’

 Monolithic Kernel
◦ In this architecture all kernel services run in kernel

space

◦ All kernel modules run within same memory space
under a single kernel thread

◦ The tight internal integration of kernel modules in
monolithic kernel architecture allows the effective
utilization of the low-level features of the underlying
system

◦ Major drawback is that any error or failure in any one
of the kernel modules leads to the crashing of the
entire kernel application

◦ Ex: LINUX, SOLARIS, MS-DOS

APS College of Engg,Bengaluru

APS College of Engg,Bengaluru

Microkernel

◦ Incorporates only the essential set of operating

system services into kernel.

◦ The rest of the Operating system services are

implemented in programs known as servers

which runs in user space

◦ This provides a highly modular design and OS-

neutral abstraction to the kernel

◦ Memory management, process management,

timer systems and interrupt handlers are the

essential services which forms the part of

microkernel

APS College of Engg,Bengaluru

 Microkernel based design approach offers
the following benefits

◦ Robustness

 If a problem is encountered in any of the services, which
runs as ‘server’ application, the same can be
reconfigured and re-started without the need for re-
starting the entire OS

 Thus this approach is highly useful for systems, which
demands high ‘availability’

 Since services which run as ‘servers’ are running on a
different memory space, the chances of corruption of
kernel services are ideally zero

◦ Configurability

 Any services, which run as ‘server’ application can be
changed without the need to restart the whole system.

 This makes the system dynamically configurable

APS College of Engg,Bengaluru

APS College of Engg,Bengaluru

Types of Operating Systems

 OS are classified into different types

 General Purpose Operating System (GPOS)

◦ OS which are deployed in general computing

systems are referred as GPOS

◦ The kernel of such an OS is more generalized

and it contains all kinds of services required for

executing generic applications

◦ Quite non-deterministic in behavior

◦ Services can inject random delay and also can

cause slow responsiveness of an application

APS College of Engg,Bengaluru

 RealTime Operating System (RTOS)

◦ Real time implies deterministic timing behavior

 OS consumes only known and expected amounts of

time regardless the number of services

◦ RTOS decides which application should run in

which order and how much time needs to be

allocated for each application

◦ Predictable performance is the hallmark of a

well-designed RTOS

 The RealTime kernel

◦ In compliment to the conventional OS kernel,

the real time kernel is highly specialized and it

contains only the minimal set of services

APS College of Engg,Bengaluru

 The basic functions of a real-time kernel

are listed below

◦ Task/Process management

◦ Task/Process Scheduling

◦ Task/Process Synchronization

◦ Error/exception handling

◦ Memory management

◦ Interrupt handling

◦ Time Management

APS College of Engg,Bengaluru

 Task/Process Management

◦ Deals with setting up memory space for the

tasks

◦ Loading the tasks code into the memory space

◦ Allocating system resources

◦ Setting up a Task control Block (TCB) for the

task and task/process termination/deletion

◦ A TCB is used for holding the information

corresponding to a task.

APS College of Engg,Bengaluru

 TCB usually contains the following set of

information

APS College of Engg,Bengaluru

 Task management service utilizes the TCB

of a task in the following way

◦ Creates a TCB for a task on creating a task

◦ Delete/remove the TCB of a task when the task

is terminated or deleted

◦ Reads the TCB to get the state of a task

◦ Update the TCB with updated parameters on

need basis

◦ Modify the TCB to change the priority of the

task dynamically

APS College of Engg,Bengaluru

 Task/ Process Scheduling

◦ Deals with sharing the CPU among various
tasks/processes.

◦ A kernel application called scheduler handles
the task scheduling.

◦ Scheduling is an algorithm implementation,
which performs the efficient and optimal
scheduling of tasks to provide deterministic
behavior

 Task/ Process Synchronization

◦ Deals with synchronizing the concurrent access
of a resource, which is shared across multiple
tasks and the communication between various
tasks

APS College of Engg,Bengaluru

 Error/Exception Handling

◦ Deals with registering and handling the errors

occurred/ exception raised during the

execution of tasks

◦ Insufficient memory, timeouts, deadlocks,

deadline missing, bus error, divide by zero,

unknown instruction execution etc..

◦ Errors/exceptions can happen at the kernel

level services or at task level

 Deadlock is an example for kernel level exception

 Timeout is an example for task level exception

APS College of Engg,Bengaluru

 Memory Management

◦ In general the memory allocation time
increases depending on th size of the block of
memory needs to be allocated and the state of
the allocated block

◦ Predictable timing and deterministic behavior
are the primary focus of an RTOS, RTOS
achieves this by compromising the effectiveness
of memory allocation

◦ RTOS makes use of ‘block’ based memory
allocation technique, instead of dynamic
memory allocation technique

◦ RTOS kernel uses blocks of fixed size of
dynamic memory and block is allocated for a
task on need basis

APS College of Engg,Bengaluru

◦ The blocks are stored in a ‘Free Buffer Queue’

◦ To achieve predictable timing and avoid the
timing overheads, most of the RTOS kernels
allow tasks to access any of the memory blocks
without any memory protection

 Interrupt Handling

◦ Deals with handling of various types of
interrupts.

◦ Interrupts provide real-time behavior to
systems

◦ Interrupts inform the processor that an
external device or an associated task requires
immediate attention of the CPU

◦ Interrupts can be either synchronous or
Asynchronous.

APS College of Engg,Bengaluru

◦ Interrupts which occurs in sync with the

currently executing task is known as Synchronous

interrupts.

 Usually the software interrupts fall under this category

 Divide by zero, memory segmentation error etc are

examples of synchronous interrupts

 For synchronous interrupts, the interrupt handler runs in

the same context of the interrupting task

◦ Asynchronous interrupts are interrupts which

occurs at any point of execution of any task, and

are not in sync with currently executing task

◦ For asynchronous interrupts, the interrupt

handler is usually written as separate task and it

runs in a different context.

APS College of Engg,Bengaluru

 Time Management

◦ Accurate time management is essential for

providing precise time reference for all

applications

◦ The time reference to kernel is provided by a

high resolution Real-Time Clock (RTC)

hardware chip

◦ The hardware timer is programmed to interrupt

the processor/controller at a fixed rate

◦ This timer interrupt is referred as ‘Timer tick’

APS College of Engg,Bengaluru

 Hard Real-Time

◦ RTOS that strictly adhere to the timing

constraints for a task is referred as ‘Hard Real-

Time’ systems

◦ A Hard Real-Time system must meet the

deadlines for a task without any slippage

◦ Missing any deadlines may produce

catastrophic results for HRT systems

 Including permanent data loss and irrecoverable

damages to the system/users

◦ HRT systems emphasize the principle ‘A late

answer is a wrong answer

 E.g Air bag control system

APS College of Engg,Bengaluru

APS College of Engg,Bengaluru

 Soft Real-Time

◦ RTOS that does not guarantee meeting

deadlines, but offer the best effort to meet the

deadline are referred as ‘Soft real time’ systems

◦ Missing deadlines for tasks are acceptable, if the

frequency of deadline missing is within the

compliance limit of the QoS

◦ SRT emphasizes the principle ‘A late answer is

an acceptable answer, but it could have been

done bit faster’

◦ ATM is a typical example for SRT

APS College of Engg,Bengaluru

APS College of Engg,Bengaluru

TASKS, PROCESS AND
THREADS

APS College of Engg,Bengaluru

 The term ‘Task’ refers to something that

needs to be done

◦ Can be one assigned by our professors/teachers,

one related to our personal or family needs

◦ We will have an order of priority and

schedule/timeline for executing these tasks

 Task is also known as ‘Job’ in the operating

system context

 A program or a part of it in execution is also

called a process

 The term ‘Task’, ‘Job’ and ‘Process’ refers to

the same entity and used interchangeably

APS College of Engg,Bengaluru

Process

 A ’Process’ is a program, or part of it, in
execution

 Process is also known as an instance of a
program in execution

 Multiple instances of the same program can
execute simultaneously.

 A process requires various system resources

◦ CPU, memory, I/O devices

 A Process is sequential in execution

APS College of Engg,Bengaluru

The Structure of a Process

 Concept of process leads
to concurrent execution
of tasks and thereby the
efficient utilization of the
CPU and other system
resources

 Concurrent execution is
achieved through the
sharing of the CPU
among the processes

 A Process which inherits
all the properties of the
CPU can be considered
as a virtual processor

APS College of Engg,Bengaluru

 Memory occupied by the process is

segregated into three regions namely,

stack, data and code memory

APS College of Engg,Bengaluru

Process States and State Transition

 The process traverses through a series of

states during its transition from a newly

created state to the terminated state

 The cycle through which a process

changes its state from ‘newly created’ to

‘execution completed’ is known as

‘Process life cycle’

APS College of Engg,Bengaluru

APS College of Engg,Bengaluru

 Process management deals with:

◦ Creation of a process

◦ Setting up a memory space for the process

◦ Loading the process’s code into the memory

space

◦ Allocating system resources

◦ Setting up a process control block for the

process and process termination/ deletion

APS College of Engg,Bengaluru

Threads
 A thread is the primitive that can execute code.

 A thread is a single sequential flow of control
within a process

 Thread is also known as light-weight process

 A process can have many threads of execution.

 Different threads which are part of a process,
share the same address space
◦ They share the data memory

◦ Code memory

◦ Heap memory area

 Threads maintain their own thread status (CPU
register values), Program counter and stack

APS College of Engg,Bengaluru

APS College of Engg,Bengaluru

 The concept of multithreading

◦ A process/task in embedded application may be

a complex or lengthy one and may contain

various suboperations like

 Getting input from I/O devices connected to the

processor

 Performing some internal calculations/operations

 Updating some I/O devices etc

 If all subfunctions of a task are executed in

sequence, the CPU utilisation may not be

efficient

APS College of Engg,Bengaluru

APS College of Engg,Bengaluru

 If the process is split into multiple threads,
which executes a portion of the process,
there will be a main thread and rest of the
threads will be created within the main
thread

 Use of multiple threads to execute a process
brings the following advantage
◦ Better memory utilization.
 Multiple threads of the same process share the address

space for data memory.

 This also reduces the complexity of inter thread
communication since variables can be shared across the
threads

◦ Since process is split into different threads, when
one thread enters a wait state, the CPU can be
utilized by other threads of the process

◦ Efficient CPU utilization, CPU is engaged all
the time

APS College of Engg,Bengaluru

 Threads falls into one of the following types

◦ User level thread

 Do not have kernel/operating system support and they

exist solely in the running process

 Even if a process contains multiple user level threads, the

OS treats it as single thread and will not switch the

execution among the different threads of it

◦ Kernel/System LevelThread

 Kernel level threads are individual units of execution,

which OS treats as separate threads

 The OS interrupts the execution of the currently running

kernel thread and switches the execution to another

kernel thread based on the scheduling policies

implemented by the OS

 In user level threads switching happens only when the

currently executing user level thread is voluntarily blocked

APS College of Engg,Bengaluru

◦ Many-to-one Model

 Here many user level threads are mapped to a single

kernel thread.

 In this model, the kernel treats all user level threads as

single thread and the execution switching among the

user level threads happens when a currently executing

user level thread voluntarily blocks itself or

relinquishes the CPU

◦ One-to-One Model

 Each user level thread is bonded to a kernel/system

level thread

◦ Many-to-Many Model

 Many user level threads are allowed to be mapped to

many kernel threads

APS College of Engg,Bengaluru

Thread Process

Thread is a single unit of execution

and is part of process

Process is a program in execution

and contains one or more threads

A thread does not have its own data

memory and heap memory. It shares

data memory and heap memory

with other threads of the same

process

Process has its own code memory,

data memory and stack memory

A thread cannot live independently;

it lives within the process

A process contains at least one

thread

There can be multiple threads in a

process. The first thread calls the

main function and occupies the start

of the stack memory of the process

Threads within a process share the

code, data and heap memory. Each

thread holds separate memory area

for stack

APS College of Engg,Bengaluru

Preemptive Scheduling

 Preemptive scheduling is employed in

systems, which implements preemptive

multitasking model

 In preemptive scheduling, every task in the

‘Ready’ queue gets a chance to execute

◦ When and how often each process gets a

chance to execute is dependent on the type of

preemptive scheduling algorithm used for

scheduling the processes

APS College of Engg,Bengaluru

Preemptive SJF Scheduling/ Shortest
RemainingTime (SRT)

◦ The non preemptive SJF scheduling algorithm sorts
the ready queue only after completing the
execution of the current process or when the
process enters the wait state

◦ The preemptive SJF scheduling algorithm sorts the
ready queue when a new process enters the ready
queue and checks whether the execution time of
the new process is shorter than the remaining of
the total estimated time for the currently
executing process

◦ If the execution time of the new process is less, the
currently executing process is preempted and the
new process is scheduled for execution

APS College of Engg,Bengaluru

